镍基高温合金GH4065A高温疲劳断裂机制研究
Fatigue fracture mechanism of Ni-base superalloy GH4065A at elevated temperatures
查看参考文献32篇
文摘
|
针对新一代航空发动机涡轮盘用超低C,N含量的变形高温合金GH4065A,系统表征和定量统计了合金的夹杂物组织。对细晶态和粗晶态试样开展了400 ℃和650 ℃不同载荷水平下的疲劳实验。通过对疲劳断裂源组织进行表征分析,研究了合金的疲劳断裂机制。结果表明,合金的夹杂物主要为氮化物。在细晶组织状态下,高温疲劳断裂机制为氮化物(单独和团簇态)起始断裂。高应变幅载荷下(≥0.9%),断裂源主要为试样表面氮化物,极少情况为表面硼化物和氧化物(Al_2O_3和MgSiO_3),且只有Al_2O_3导致合金过早疲劳断裂;低应变幅载荷下(<0.9%),断裂源为氮化物-解理面型,均在试样近表面/内部。两种不同的断裂方式分别导致高应变幅载荷下400 ℃疲劳寿命高于650 ℃疲劳寿命,低应变幅载荷下反之。统计发现,引起疲劳断裂的所有氮化物的尺寸全部达到/超过细晶组织平均晶粒尺寸。在粗晶组织状态下,400 ℃下疲劳断裂机制为准解理起始断裂。晶粒尺寸的增加极大降低了可能诱发疲劳开裂的夹杂物的有效数量,滑移诱发的解理断裂成为主导断裂机制。 |
其他语种文摘
|
GH4065A is a newly developed high-performance cast-wrought Ni-base superalloy with ultralow C and N content used for advanced turbine engine disc.In this study,the alloy's inclusions of the alloy are characterized and statistically analyzed.To investigate the fatigue fracture mechanism,straincontrolled fatigue tests are conducted at 400 ℃ and 650 ℃ on the fine-grained and coarse-grained samples respectively.The results show that the alloy's inclusions of the alloy are mainly nitrides.For the finegrained samples,discrete nitride particles and clustered nitrides both with a critical size larger than the average grain size are responsible for the fatigue crack initiation.When subjected to high-level strains (≥0.9%),fatigue failure primarily originates from surface nitrides,with rare occurrences of boride and oxide initiation.Surface crack induced by Al_2O_3,rather than boride or MgSiO_3,is found to significantly reduce the fatigue life.Higher fatigue temperature results in reduced life cycles.When under lower levels of strain,however,subsurface/internal nitride-facet initiations dominate and fatigue life is prolonged by the elevated temperature.In the coarse-grained samples,fatigue failures at 400 ℃ are found to be initiated by quasi-cleavage cracking mechanism.Due to the increased grain size,the inclusion-induced crack initiation is suppressed while slip-induced cleavage cracking mechanism becomes predominant. |
来源
|
材料工程
,2025,53(1):72-80 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2024.000321
|
关键词
|
镍基高温合金
;
疲劳
;
夹杂物
;
氮化物
;
断裂源
|
地址
|
钢铁研究总院有限公司高温材料研究所, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
国家重点研发计划
;
国家重大科技专项
|
文献收藏号
|
CSCD:7940408
|
参考文献 共
32
共2页
|
1.
Reed R C.
The superalloys: fundamentals and applications,2006
|
CSCD被引
127
次
|
|
|
|
2.
Findley K O. A critical assessment of fatigue crack nucleation and growth models for Ni-and Ni, Fe-based superalloys.
International Materials Reviews,2011,56(1):49-71
|
CSCD被引
1
次
|
|
|
|
3.
刘佳宾. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状.
材料导报,2021,35(增刊2):385-390
|
CSCD被引
2
次
|
|
|
|
4.
周静怡. 粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究.
航空材料学报,2017,37(5):83-89
|
CSCD被引
10
次
|
|
|
|
5.
Chan K S. Roles of microstructure in fatigue crack initiation.
International Journal of Fatigue,2010,32:1428-1447
|
CSCD被引
2
次
|
|
|
|
6.
Goto M. Initiation and propagation behaviour of microcracks in Ni-base superalloy Udimet 720 Li.
Engineering Fracture Mechanics,1998,60(1):1-18
|
CSCD被引
1
次
|
|
|
|
7.
Texier D. Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions.
Materials Science and Engineering: A,2016,678:122-136
|
CSCD被引
8
次
|
|
|
|
8.
Hu D Y. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96.
International Journal of Fatigue,2019,118:237-248
|
CSCD被引
4
次
|
|
|
|
9.
Bhowal P R. Carbides and their influence on notched low cycle fatigue behavior of finegrained IN718 gas turbine disk material.
Proceedings of the Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives,2005:341-349
|
CSCD被引
1
次
|
|
|
|
10.
冯业飞. 夹杂物对FGH96合金低周疲劳寿命的影响.
稀有金属材料与工程,2021,50(7):2455-2463
|
CSCD被引
5
次
|
|
|
|
11.
Zhong Z H. On the low cycle fatigue behavior of a Ni-base superalloy containing high Co and Ti contents.
Materials Science and Engineering: A,2012,552:434-443
|
CSCD被引
7
次
|
|
|
|
12.
Chen Y Q. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy.
Materials Science and Engineering: A,2013,580:150-158
|
CSCD被引
35
次
|
|
|
|
13.
Telesman J. Effect of a large population of seeded alumina inclusions on crack initiation and small crack fatigue crack growth in Udimet 720 nickel-base disk superalloy.
International Journal of Fatigue,2021,142:105953
|
CSCD被引
2
次
|
|
|
|
14.
Texier D. Short crack propagation from cracked non-metallic inclusions in a Nibased polycrystalline superalloy.
Acta Materialia,2019,165:241-258
|
CSCD被引
1
次
|
|
|
|
15.
杨金龙. FGH97高温合金不同控制模式低周疲劳性能研究.
稀有金属材料与工程,2020,49(9):3235-3243
|
CSCD被引
3
次
|
|
|
|
16.
Chang P N.
Competing fatigue mechanisms in Nickel-base superalloy Rene 88DT,2011
|
CSCD被引
2
次
|
|
|
|
17.
Texier D. Microstructural features controlling the variability in low-cycle fatigue properties of alloy Inconel 718DA at intermediate temperature.
Metallurgical and Materials Transactions A,2016,47:1096-1109
|
CSCD被引
4
次
|
|
|
|
18.
Shi Y. The effect of inclusion factors on fatigue life and fracture-mechanics-based life method for a P/M superalloy at elevated temperature.
International Journal of Fatigue,2020,131:105365
|
CSCD被引
1
次
|
|
|
|
19.
Shi Y. Evaluation of the influence of surface crack-like defects on fatigue life for a P/M nickelbased superalloy FGH96.
International Journal of Fatigue,2020,137:105639
|
CSCD被引
2
次
|
|
|
|
20.
Leon-Cazares F D. A multiscale study on the morphology and evolution of slip bands in a nickel-based superalloy during low cycle fatigue.
Acta Materialia,2020,182:47-59
|
CSCD被引
1
次
|
|
|
|
|