Cr对Al-Cu-Mg-Ag合金动态再结晶行为和力学性能的影响
Effect of Cr on dynamic recrystallization behavior and mechanical properties of Al-Cu-Mg-Ag alloys
查看参考文献23篇
文摘
|
借助光学显微镜(OM),X射线衍射仪(XRD),场发射扫描电镜(SEM-EDS)和透射电镜(TEM)研究Cr对Al-Cu- Mg-Ag合金铸态组织和双级均匀化后弥散相分布、尺寸和数量密度的影响,并采用高通量等温压缩实验研究不同等效应变下Cr对Al-Cu-Mg-Ag合金动态再结晶行为的影响。结果表明:均匀化阶段除析出棒状T-Al_(20)Cu_2Mn_3弥散相外,还出现平均直径和数量密度分别为67.4 nm和4.7 μm~(-2)的球状Al_7 (Cr, Mn)弥散相,Cr与Mn相反的平衡分配系数(KMn<1 vs KCr>1)将无弥散相析出面积分数从29.5%降至13.8%,棒状的T-Al_(20)Cu_2Mn_3弥散相平均长度从275.4 nm减小至147.3 nm,数量密度从3.5 μm~(-2)增至10.4 μm~(-2)。EBSD和拉伸实验结果表明,Al_7 (Cr, Mn)弥散相对位错运动阻碍作用减少热压缩过程中小角度晶界向大角度晶界的转变,抑制动态再结晶。Cr的添加提高Al-Cu-Mg-Ag合金不同温度下的力学性能,在25,250,300 ℃下Al_7 (Cr,Mn)弥散相对合金屈服强度的贡献值分别为21.9,16.2 MPa和15.3 MPa。 |
其他语种文摘
|
The effects of Cr on the microstructure of as-cast Al-Cu-Mg-Ag alloys and the distribution, size and number density of dispersoids after double-stage homogenization were investigated by OM, XRD, SEM-EDS and TEM methods. The effects of Cr on the dynamic recrystallization behavior of Al-Cu-Mg- Ag alloys under different equivalent strain were studied by high-throughput isothermal compression experiments. The results show that spherical Al_7 (Cr, Mn) dispersoids with average diameter and number density of 67.4 nm and 4.7 μm~(-2) are precipitated during the homogenization process, in addition to the rodlike T-Al_(20)Cu_2Mn_3 dispersoids. The opposite equilibrium distribution coefficient of Cr and Mn (KMn<1 vs KCr>1) reduces the area fraction of dispersoid-free zones from 29.5% to 13.8%, the average length of rod-like T-Al_(20)Cu_2Mn_3 decreases from 275.4 nm to 147.3 nm, and its number density increases from 3.5 μm~(-2) to 10.4 μm~(-2). EBSD and tensile test results indicate that the Al_7 (Cr, Mn) dispersoids hinder the dislocation movement, reducing the transition from low-angle grain boundaries to high-angle grain boundaries during thermal compression, and inhibiting the dynamic recrystallization. The addition of Cr increases the mechanical properties of Al-Cu-Mg-Ag alloys at different temperatures, and the yield strength contributions of Al_7 (Cr, Mn) dispersoids to the alloys at 25,250 ℃ and 300 ℃ are 21.9,16.2 MPa and 15.3 MPa, respectively. |
来源
|
材料工程
,2024,52(10):80-89 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000186
|
关键词
|
Al-Cu-Mg-Ag合金
;
高温拉伸
;
高通量等温压缩
;
弥散相
;
动态再结晶
|
地址
|
1.
东北大学, 材料电磁过程研究教育部重点实验室, 沈阳, 110819
2.
山东省宏灿材料科技有限公司, 山东, 滨州, 256600
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
山东省重点研发项目
;
山东省重点研发计划(科技示范工程)
|
文献收藏号
|
CSCD:7840335
|
参考文献 共
23
共2页
|
1.
Guo S. Effect of rolling temperature on mechanical properties and corrosion resistance of Al-Cu-Mg-Ag alloy.
Journal of Alloys and Compounds,2022,897:163-168
|
CSCD被引
2
次
|
|
|
|
2.
Tang C L. Effect of non-isothermal ageing on microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy.
Materials Science and Engineering:A,2022,830:142315
|
CSCD被引
5
次
|
|
|
|
3.
王建. Al-Cu-Mg-Ag 合金热处理工艺的研究进展.
金属热处理,2015,40(3):163-168
|
CSCD被引
14
次
|
|
|
|
4.
徐浩楠. Al-Cu-Mg-Ag耐热铝合金研究进展.
信息记录材料,2022,23(10):8-10
|
CSCD被引
2
次
|
|
|
|
5.
Liu L. Modified kinetic model for describing continuous dynamic recrystallization behavior of Al 2219 alloy during hot deformation process.
Journal of Alloys and Compounds,2020,817:153301
|
CSCD被引
5
次
|
|
|
|
6.
Zhao B Y. Investigation on recrystallization and precipitation behaviors of Al-4.5Cu-1.5Mg alloy refined by Ti-supported TiC nanoparticles.
Journal of Alloys and Compounds,2019,800(5):392-402
|
CSCD被引
2
次
|
|
|
|
7.
Liu L. A novel simulation of continuous dynamic recrystallization process for 2219 aluminum alloy using cellular automata technique.
Materials Science and Engineering:A,2021,815:141256
|
CSCD被引
7
次
|
|
|
|
8.
Lin B. Developing high performance mechanical properties at elevated temperature in squeeze cast Al-Cu-Mn-Fe-Ni alloys.
Materials Characterization,2019,150(1):128-137
|
CSCD被引
8
次
|
|
|
|
9.
Chen J L. Contributions to high temperature strengthening from three types of heat-resistant phase formed during solidification, solution treatment and ageing treatment of Al-Cu-Mn-Ni alloys respectively.
Materials Science and Engineering:A,2020,772:138819
|
CSCD被引
10
次
|
|
|
|
10.
潘康观. Al -Cu-Mg -Ag - Sc - Zr合金的均匀化工艺.
金属热处理,2017,42(5):117-120
|
CSCD被引
3
次
|
|
|
|
11.
Knipling K E. Ambientand high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr(at%) alloys.
Acta Materialia,2011,59(3):943-954
|
CSCD被引
43
次
|
|
|
|
12.
Knipling K E. Criteria for developing castable, creep-resistant aluminum-based alloys-a review.
International Journal of Materials Research,2006,97(42):246-265
|
CSCD被引
12
次
|
|
|
|
13.
Zhang X J. The effect of grain refinement and precipitation strengthening induced by Sc or Er alloying on the mechanical properties of cast Al-Li-Cu-Mg alloys at elevated temperatures.
Materials Science and Engineering:A,2021,822:141641
|
CSCD被引
6
次
|
|
|
|
14.
王建.
Cr、Sc对Al-Cu-Mg-Ag合金的组织与性能的影响,2015
|
CSCD被引
4
次
|
|
|
|
15.
Huang Y C. Effects of homogenization on the dissolution and precipitation behaviors of intermetallic phase for a Zr and Er containing Al-Zn-Mg-Cu alloy.
Progress in Natural Science,2020,30(1):47-53
|
CSCD被引
1
次
|
|
|
|
16.
Guo C. Effects of Ag on the age hardening response and intergranular corrosion resistance of Al-Mg alloys.
Materials Characterization,2019,147(10):84-92
|
CSCD被引
5
次
|
|
|
|
17.
刘晓艳. Al-Cu-Mg-Ag耐热铝合金均匀化处理.
材料科学与工艺,2011,19(4):28-32
|
CSCD被引
6
次
|
|
|
|
18.
Hutchinson C R. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag alloys.
Acta Materialia,2001,49(14):2827-2841
|
CSCD被引
64
次
|
|
|
|
19.
张新明. 温度与保温时间对2519A铝合金高温力学性能的影响.
中国有色金属学报,2007,17(10):1561-1566
|
CSCD被引
11
次
|
|
|
|
20.
Porter D A.
Phase transformations in metals and alloys,1981
|
CSCD被引
16
次
|
|
|
|
|