柔性电子材料与器件在可穿戴传感领域的发展现状、挑战与创新策略
Current status,challenges,and innovative strategies of flexible electronic materials and devices in field of wearable sensing
查看参考文献85篇
文摘
|
可穿戴材料与器件正朝着柔性、轻薄、无感、智能化和可长期佩戴等方向发展,以满足人体生理心理等个性化需求。这一趋势为运动健康监测领域带来了革新,并得到了学术界和工业界的广泛关注。然而,在满足人体个性化发展需求的同时,可穿戴柔性材料与器件本身也面临着机械鲁棒性、信号稳定性、软硬接口连接和生物相容性等性能方面的挑战。因此,本文旨在从实际运动健康监测需求的角度出发,讨论构建可穿戴柔性材料与器件的材料、结构和制备工艺。同时,深入探讨了其在机械、电气和生物性能等方面所面临的主要挑战因素及其解决路径。最后,预测了未来可穿戴柔性电子材料与器件的发展方向,包括全柔性集成、机械鲁棒性的增强、信号解耦与识别的高精度化、监测的稳定性与灵敏度、快速响应性、超薄无感设计、多模态信号处理以及智能化自适应反馈等。 |
其他语种文摘
|
Wearable materials and devices are developing toward flexibility, lightness, imperceptibility, intelligence, and long-term wearability to meet the personalized needs such as physiological and psychological demands of human body. This trend brought innovation to the field of sports and health monitoring, receiving extensive attention from the academic and industrial communities. However, while meeting the individualized development needs of the human body, wearable flexible materials and devices also face challenges in terms of mechanical robustness, signal stability, soft-hard interface connection, and biocompatibility. Therefore, this review aims to discuss the materials, structures, and fabrication processes for constructing wearable flexible materials and devices from the perspective of practical sports and health monitoring needs,and proposes the major challenging factors and their solutions in terms of mechanical, electrical, and biological performance. Finally, this paper predicts the future development directions of wearable flexible electronic materials and devices, including fully flexible integration, enhanced mechanical robustness, high-precision signal decoupling and recognition, stability,and sensitivity of monitoring, rapid responsiveness, ultra-thin imperceptible design, multimodal signal processing, as well as intelligent adaptive feedback. |
来源
|
材料工程
,2024,52(8):42-58 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2024.000003
|
关键词
|
可穿戴电子器件
;
材料结构
;
机械鲁棒性
;
拉伸性
;
信号灵敏性
;
信号准确性
;
传感器智能化
|
地址
|
1.
浙江大学运动科学与健康工程研究所, 杭州, 310058
2.
浙江大学教育学院数字体育与健康实验室, 杭州, 300058
3.
哈尔滨工业大学(深圳)机电学院, 广东, 深圳, 518055
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;电子技术、通信技术 |
基金
|
浙江省哲学社会科学规划“之江青年理论与调研专项课题”
;
国家自然科学基金
;
浙江省自然科学基金
;
浙江省“ 尖兵”“ 领雁”研发攻关计划项目
;
广东省区域联合基金- 青年基金项目
;
中央高校基本业务费专项资金
|
文献收藏号
|
CSCD:7794328
|
参考文献 共
85
共5页
|
1.
Luo Y. Technology roadmap for flexible sensors.
ACS Nano,2023,17(6):5211-5295
|
CSCD被引
20
次
|
|
|
|
2.
Lim H R. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment.
Advanced Materials,2020,32(15):1901924
|
CSCD被引
38
次
|
|
|
|
3.
Pyo S. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications.
Advanced Materials,2021,33(47):2005902
|
CSCD被引
26
次
|
|
|
|
4.
Nie Z. Mechanically active materials and devices for bio-interfaced pressure sensors-a review.
Advanced Materials,2022:2205609
|
CSCD被引
3
次
|
|
|
|
5.
Wang S. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor.
Composites Science and Technology,2021,202:108600
|
CSCD被引
14
次
|
|
|
|
6.
Khair N. Carbon-based electronic textiles: materials, fabrication processes and applications.
Journal of Materials Science,2019,54(14):10079-10101
|
CSCD被引
1
次
|
|
|
|
7.
Zhou J. Programmable and weldable superelasticEGaIn/TPU composite fiber by wet spinning for flexible electronics.
ACS Applied Materials & Interfaces,2023,15(49):57533-57544
|
CSCD被引
1
次
|
|
|
|
8.
Lim G H. Curving silver nanowires using liquid droplets for highly stretchable and durable percolation networks.
Nanoscale,2017,9(26):8938-8944
|
CSCD被引
1
次
|
|
|
|
9.
Zhu Y. Enhanced oxidation resistance and electrical conductivity copper nanowires-graphene hybrid films for flexible strain sensors.
New Journal of Chemistry,2017,41(12):4950-4958
|
CSCD被引
6
次
|
|
|
|
10.
Yu Y. Ultra-stretchable porous fibershaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity.
Advanced Electronic Materials,2019,5(10):1900538
|
CSCD被引
3
次
|
|
|
|
11.
Melnykowycz M. Piezoresistive soft condensed matter sensor for body-mounted vital function applications.
Sensors,2016,16(3):326
|
CSCD被引
1
次
|
|
|
|
12.
Zheng Y. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring.
Composites Science and Technology,2018,156:276-286
|
CSCD被引
26
次
|
|
|
|
13.
Kong M. Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions.
The International Journal of Advanced Manufacturing Technology,2023,131(5):1-33
|
CSCD被引
1
次
|
|
|
|
14.
Liu Y. Micro/nano-structure skeleton assembled with graphene for highly sensitive and flexible wearable sensor.
Composites Part A,2023,165:107357
|
CSCD被引
2
次
|
|
|
|
15.
Wang Y. Conductive polymers for stretchable supercapacitors.
Nano Research,2019,12:1978-1987
|
CSCD被引
27
次
|
|
|
|
16.
Xia Y. Wearable electrochemical sensor based on bimetallic MOF coated CNT/PDMS film electrode via a dual-stamping method for real-time sweat glucose analysis.
Analytica Chimica Acta,2023,1278:341754
|
CSCD被引
2
次
|
|
|
|
17.
Son S Y. Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors.
Nature Communications,2022,13(1):2739
|
CSCD被引
1
次
|
|
|
|
18.
Deng J. Electrical bioadhesive interface for bioelectronics.
Nature Materials,2021,20(2):229-236
|
CSCD被引
21
次
|
|
|
|
19.
Shen K. Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultradurability as multifunctional ionic skins.
Chemical Engineering Journal,2023,451:138525
|
CSCD被引
3
次
|
|
|
|
20.
Li J. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
Proceedings of the National Academy of Sciences,2018,115(41):E9542-E9549
|
CSCD被引
2
次
|
|
|
|
|