二维纳米棒结构CoMn_2O_4/CC电极材料的制备及其电化学性能
Preparation and electrochemical properties of two-dimensional nanorod structure CoMn_2O_4 /CC electrode materials
查看参考文献25篇
文摘
|
金属氧化物因其高容量、低成本、适于商业化、环保等特点而常被应用于超级电容器电极材料。以Mn-MOF为前驱体,将其置于乙醇中与Co(NO_3)_2进行离子交换和刻蚀反应,然后在空气中热处理,最后在碳布(carbon cloth,CC)基体上得到高度结晶的CoMn_2O_4二维纳米棒结构。对不同Co(NO_3)_2添加量下制备的CoMn_2O_4/CC和直接热处理得到的Mn_2O_3/CC进行SEM和XRD分析,并且通过循环伏安测试、恒电流充放电测试和交流阻抗测试等进行电化学性能测试。结果表明:0.3 g Co(NO_3)_2刻蚀后CoMn_2O_4/CC的母体结构相对保留良好,形成中空的纳米空心结构,热处理后在碳布上原位生长的垂直纳米棒结构均一密集地包裹碳纤维,由于无任何黏合剂的添加,确保较高的力学稳定性和导电性。在1.2 mA·cm~(-2)的电流密度下,电极材料具有809.8 mF·cm~(-2)的面积比电容;在5 mA·cm~(-2)的电流密度下循环5000周次后电容保持率为79.1%,是具有潜在应用前景的一种电极材料。 |
其他语种文摘
|
Metal oxides are often used as electrode materials for supercapacitors because of their high capacity, low cost, suitability for commercialization, and environmental friendliness. In this study, Mn- MOF was used as a precursor and placed in ethanol for ion exchange and etching reaction with Co(NO_3)_2, followed by heat treatment in air, and finally highly crystalline CoMn_2O_4 two-dimensional nanorod structures were obtained on a carbon cloth(CC) substrate. SEM and XRD analyses of CoMn_2O_4/CC prepared with different Co(NO_3)_2 additions and Mn_2O_3/CC obtained by direct heat treatment were performed, and electrochemical properties were measured by cyclic voltammetry test, constant current charge/discharge test and AC impedance test. The results show that the parent structure of CoMn_2O_4/CC is relatively well preserved after 0.3 g Co(NO_3)_2 etching, forming a nano-hollow structure, and the vertical nanorod structures grow in situ on carbon cloth after heat treatment wrapping carbon fibers uniformly and densely, ensuring high mechanical stability and electrical conductivity due to the absence of any binder addition. The electrode material has an area specific capacitance of 809.8 mF·cm~(-2) at the current density of 1.2 mA·cm~(-2) and the capacitance retention is 79.1% after 5000 cycles at the current density of 5 mA·cm~(-2),showing potential application prospects. |
来源
|
材料工程
,2024,52(6):59-68 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000792
|
关键词
|
超级电容器
;
锰基金属有机骨架衍生物
;
电极材料
;
柔性
|
地址
|
桂林理工大学化学与生物工程学院, 广西电磁化学功能物质重点实验室, 广西, 桂林, 541006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
广西自然科学基金
|
文献收藏号
|
CSCD:7752853
|
参考文献 共
25
共2页
|
1.
乔亮波. 电池-超级电容器混合储能系统研究进展.
储能科学与技术,2022,11(1):98-106
|
CSCD被引
19
次
|
|
|
|
2.
Muhammad A A M A. Review of the use of transition-metal-oxide and conducting polymerbased fibres for high-performance supercapacitors.
Materials & Design,2019,186:1088199
|
CSCD被引
1
次
|
|
|
|
3.
Zhang H Y. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices.
Energy & Environmental Science,2023,16:889-951
|
CSCD被引
4
次
|
|
|
|
4.
赵基钢. 超级电容器电极用Ti_3C_2T_x基复合材料的研究进展.
材料工程,2023,51(6):12-19
|
CSCD被引
2
次
|
|
|
|
5.
Hong H. Advances in fabricbased supercapacitors and batteries: harnessing textiles for nextgeneration energy storage.
Journal of Energy Storage,2024:109561
|
CSCD被引
1
次
|
|
|
|
6.
马锐. Ni-BTC/RGO复合材料的制备及其电化学性能.
材料工程,2022,50(6):124-130
|
CSCD被引
1
次
|
|
|
|
7.
Agnihotri N. Hierarchically designed PEDOT encapsulated graphene-MnO_2 nanocomposite as supercapacitors.
Materials Research Bulletin,2017,88:218-225
|
CSCD被引
4
次
|
|
|
|
8.
蒋超. 氧空位增强金属氧化物的超级电容器储能性能.
硅酸盐学报,2023,51(7):1835-1846
|
CSCD被引
1
次
|
|
|
|
9.
Muhammad A A M A. Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance.
Scientific Reports,2019,9:16782
|
CSCD被引
1
次
|
|
|
|
10.
Baumann A E. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices.
Communications Chemistry,2019,2:86
|
CSCD被引
13
次
|
|
|
|
11.
张玮倩. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展.
材料导报,2018,32(21):3731-3736
|
CSCD被引
4
次
|
|
|
|
12.
Salunkhe R R. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework.
ACS Nano,2015,9(6):6288-6296
|
CSCD被引
40
次
|
|
|
|
13.
Zheng Y. Hydrothermal synthesis of MnO_2 with different morphological characteristics as electrode material for high electrochemical performance supercapacitors.
International Journal of Electrochemical Science,2020,15(2):1465-1473
|
CSCD被引
2
次
|
|
|
|
14.
Wu X. Controllable synthesis of MnO_2 with different structures for supercapacitor electrodes.
Journal of Electroanalytical Chemistry,2019,848:113332
|
CSCD被引
1
次
|
|
|
|
15.
Le K. MOF-derived hierarchical coreshell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asym-metric supercapacitors.
Electrochimica Acta,2019,323:134826
|
CSCD被引
8
次
|
|
|
|
16.
Liu Y. Facile synthesis and characterization of the Mn-MOF electrode material for flexible supercapacitors.
Journal of Electrochemical Energy Conversion and Storage,2022,19(3):031002
|
CSCD被引
1
次
|
|
|
|
17.
Guan C. Rational design of metalorganic framework derived hollow NiCo_2O_4 arrays for flexible supercapacitor and electrocatalysis.
Advanced Energy Materials,2017,7(12):1602391
|
CSCD被引
60
次
|
|
|
|
18.
Sandosh T A. Morphology controlled synthesis of one-dimensional CoMn_2O_4 nanorods for high-performance supercapacitor electrode application.
Chemical Papers,2021,75(6):2295-2304
|
CSCD被引
1
次
|
|
|
|
19.
Yun Y F. Spinel CoMn_2O_4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode.
Applied Surface Science,2015,357:2013-2021
|
CSCD被引
4
次
|
|
|
|
20.
Yuan S. Hierarchical porous SnO_2/Mn_2O_3 core/shell microspheres as advanced anode materials for lithium-ion batteries.
Materials Letters,2015,145:104-107
|
CSCD被引
5
次
|
|
|
|
|