基于双线性类桁架材料模型的拉-压杆拓扑优化设计
Topology Optimization Design of Strut-and-Tie Model Based on Bi-Modulus Truss-Like Materials
查看参考文献23篇
文摘
|
拉-压杆模型是复杂钢筋混凝土结构配筋设计的标准方法之一,采用拓扑优化建立复杂应力区域的拉-压杆模型具有十分重要的意义.渐进结构优化类算法和各向同性材料惩罚模型类算法已经广泛应用于此类研究,这些算法的优化对象为各向同性的等厚度带孔板,其本质是在最优解附近寻找近似解.此外,由于应力-应变曲线不光滑的特性给求解优化问题带来困难,现有拉-压杆构建方法很少考虑材料拉压性能不同对最优拓扑产生的影响.本文提出了一种基于双线性类桁架材料模型的拓扑优化算法,以寻求复杂混凝土结构中拉-压杆的最优拓扑构型.该方法以结点位置正交杆件的密度和方向作为设计变量,拉伸区和压缩区的材料特性分别与钢筋的拉伸模量和混凝土的压缩模量一致.采用材料替换方法克服拉压异性模量引起的非线性问题,并给出了单元刚度矩阵的修正方法.优化问题采用基于灵敏度信息的迭代算法求解.数值算例表明,结构拉压性能差异对最优拓扑结构产生显著影响.与现有基于单元密度的优化方法相比,所提方法能够准确描述复杂应力状态下的材料最优分布场,计算效率提高约26 %,同时给出更多材料分布细节. |
其他语种文摘
|
Strut-and-tie model method is one of the standard methods for designing reinforcement in complex reinforced concrete structures.It is very important to construct the strut-and-tie model in complex stress regions using topology optimization.The algorithms of Solid Isotropic Microstructures with Penalization (SIMP) and Evolutionary Structural Optimization (ESO) have been widely used in such studies.These algorithms are optimized for isotropic perforated plates of unit thickness,the essence of which is to seek approximate solutions near the optimal solution.In addition,existing methods rarely consider the effect of different material tension-compression properties on the optimal topology due to the difficulties caused by the unsmooth character of the constitutive curve.A topology optimization algorithm based on a truss-like continuum with bi-modulus materials is proposed to construct the optimal topology of the strut-and-tie model.The density and orientation of the orthogonal trusses at each node are considered as the design variables.The material properties in the tension and compression regions are consistent with the tensile modulus of the reinforcement and the compression modulus of the concrete,respectively.A material substitution scheme is introduced to overcome the non-linearity caused by the bi-modulus,and a correction formula for stiffness matrix is given.The optimization is achieved through an iterative algorithm based on sensitivity information.Numerical examples show that differences in elastic modulus significantly affect the optimal topology.Compared to the density-based optimization methods,the proposed algorithm is able to accurately describe the optimal material distribution field under complex stress states,with the computational efficiency imporved by about 26 %.Besides that,more details of the material distribution can be given.The algorithm is able to improve efficiency and accuracy while giving more design details. |
来源
|
力学季刊
,2024,45(2):419-428 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2024.02.012
|
关键词
|
拓扑优化
;
类桁架结构
;
拉压异性
;
拉-压杆模型
;
配筋设计
|
地址
|
华侨大学土木工程学院, 福建, 厦门, 361000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-0053 |
学科
|
建筑科学 |
基金
|
国家自然科学基金
;
福建省科技计划引导性项目
|
文献收藏号
|
CSCD:7744709
|
参考文献 共
23
共2页
|
1.
张军锋. 混凝土本构模型在基于分层壳建模的RC板壳极限荷载分析中的对比.
力学季刊,2022,43(4):1001-1010
|
CSCD被引
1
次
|
|
|
|
2.
陆婷婷. HPFRCC梁柱组合件节点核心区力学性能及计算模型研究.
力学季刊,2023,44(3):696-708
|
CSCD被引
1
次
|
|
|
|
3.
Zhang H Z. Reinforcement layout optimisation of RC D-regions.
Advances in Structural Engineering,2014,17(7):979-992
|
CSCD被引
8
次
|
|
|
|
4.
熊学玉. 基于修正的软化拉压杆模型的RC框架边节点受剪性能研究.
工程力学,2022,39(6):55-71
|
CSCD被引
3
次
|
|
|
|
5.
Zhong J T. A new evaluation procedure for the strut-and-tie models of the disturbed regions of reinforced concrete structures.
Engineering Structures,2017,148:660-672
|
CSCD被引
3
次
|
|
|
|
6.
Zhou L. Investigation of optimal layout of ties in stm developed by topology optimization.
Structural Concrete,2016,17(2):175-182
|
CSCD被引
1
次
|
|
|
|
7.
张鹄志. 钢筋混凝土D区配筋的拓扑优化设计研究.
应用力学学报,2017,4(34):748-755
|
CSCD被引
1
次
|
|
|
|
8.
Smarslik M. Toward holistic tension-or compression-biased structural designs using topology optimization.
Engineering Structures,2019,199:109632
|
CSCD被引
2
次
|
|
|
|
9.
张鹄志. 基于拓扑优化的钢筋混凝土构件设计方法研究综述.
武汉大学学报(工学版),2022,5(55):462-473
|
CSCD被引
1
次
|
|
|
|
10.
张鹄志. 不同荷载工况下钢筋混凝土深梁的拓扑优化设计.
河海大学学报(自然科学版),2021,4(49):366-372
|
CSCD被引
1
次
|
|
|
|
11.
韩启东. 基于刚度与应力问题的多相材料双尺度拓扑优化研究.
力学季刊,2023,44(3):551-567
|
CSCD被引
2
次
|
|
|
|
12.
Bendsoe M P. Optimal shape design as a material distribution problem.
Structural Optimization,1989,1(4):193-202
|
CSCD被引
189
次
|
|
|
|
13.
Xie Y M. A simple evolutionary procedure for structural optimization.
Computers & Structures,1993,49(5):885-896
|
CSCD被引
339
次
|
|
|
|
14.
Liang Q. Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure.
ACI Structural Journal,2000,97(2):322-331
|
CSCD被引
15
次
|
|
|
|
15.
刘霞. 优化方法建立钢筋混凝土梁压杆-拉杆模型.
工程力学,2013,9(30):151-157
|
CSCD被引
1
次
|
|
|
|
16.
Bruggi M. Generating strut-and-tie patterns for reinforced concrete structures using topology optimization.
Computers & Structures,2009,87(23/24):1483-1495
|
CSCD被引
11
次
|
|
|
|
17.
Liu S T. Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design.
Structural and Multidisciplinary Optimization,2011,43(3):369-380
|
CSCD被引
5
次
|
|
|
|
18.
Cai K. Topology optimization of continuum structures with bi-modulus materials.
Engineering Optimization,2014,46(2):244-260
|
CSCD被引
1
次
|
|
|
|
19.
Shi S Y. Topology optimization for truss-like material distribution field with b-spline expression.
Structural and Multidisciplinary Optimization,2021,64(4):2025-2043
|
CSCD被引
1
次
|
|
|
|
20.
Zhou K M. Topology optimization of truss-like continuum structures for natural frequencies.
Structural and Multidisciplinary Optimization,2013,47(4):613-619
|
CSCD被引
2
次
|
|
|
|
|