帮助 关于我们

返回检索结果

Large language models for diabetes care: Potentials and prospects
基于大语言模型的糖尿病管理:潜力与展望

查看参考文献16篇

Sheng Bin 1   Guan Zhouyu 1   Lim Lee Ling 2,3,4   Jiang Zehua 5,6   Mathioudakis Nestoras 7   Li Jiajia 1   Liu Ruhan 1   Bao Yuqian 1   Bee Yong Mong 8   Wang Yaxing 9   Zheng Yingfeng 10   Tan Gavin Siew Wei 11   Ji Hongwei 12   Car Josip 13,14   Wang Haibo 15 *   Klonoff David C 16 *   Li Huating 1 *   Tham Yih Chung 11,17,18,19 *   Wong Tien Yin 5,6,11 *   Jia Weiping 1 *  
文摘 The increasing prevalence of diabetes has become a global public health concern in the 21st century. In 2021, it was estimated that 537 million people had diabetes, and this number is projected to reach 643 million by 2030, and 783 million by 2045 [1]. Such a huge burden of diabetes brings great challenges in its prevention and management, including early diagnosis, timely interventions, and regular monitoring of risk factor control and complications screening. Continuous self-care support and patient empowerment can enhance clinical and psychobehavioural outcomes [2], although these require additional resources including manpower, infrastructure (hard and technology), and finances. The emergence of digital health technologies (DHTs), especially artificial intelligence (AI), may help address these obstacles and alleviate the burden of diabetes [3]. Large language models (LLMs), a generative AI that can accept image and text inputs and produce text outputs, have shown promise in various aspects of medical care.
来源 Science Bulletin ,2024,69(5):583-588 【核心库】
DOI 10.1016/j.scib.2024.01.004
地址

1. Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong Uni, Shanghai International Joint Laboratory of Intelligent Prevention and Treatment for Metabolic Diseases, Shanghai, 200240  

2. Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia, Kuala Lumpur, 50603  

3. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong  

4. Asia Diabetes Foundation, Hong Kong  

5. Tsinghua Medicine of Tsinghua University, Beijing, 100084  

6. School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Beijing, 102218  

7. Division of Endocrinology, Diabetes, & Metabolism, Johns Hopkins University School of Medicine, USA, Baltimore, 21211  

8. Department of Endocrinology, Singapore General Hospital, Singapore, Singapore, 169608  

9. Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, 100730  

10. Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Guangzhou, 510060  

11. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, 168751  

12. Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, 266011  

13. Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore, 639798  

14. Department of Primary Care and Public Health, School of Public Health, Imperial College London, UK, London, SW7 2BU  

15. Clinical Trial Unit, Research Centre of Big Data and Artificial Intelligence in Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080  

16. Diabetes Research Institute, Mills-Peninsula Medical Center, USA, San Mateo, 94010  

17. Centre for Innovation and Precision Eye Health, National University of Singapore, Singapore, Singapore, 119077  

18. Department of Ophthalmology, National University of Singapore, Singapore, Singapore, 119077  

19. Ophthalmology and Visual Science Academic Cli, Singapore, Singapore, 169857

语种 英文
文献类型 研究性论文
ISSN 2095-9273
学科 内科学
基金 supported by the National Key R&D Program of China ;  国家自然科学基金 ;  the Shanghai Municipal Key Clinical Specialty, Shanghai Research Center for Endocrine and Metabolic Diseases ;  the Chinese Academy of Engineering ;  the Innovative Research Team of High-level Local Universities in Shanghai
文献收藏号 CSCD:7728582

参考文献 共 16 共1页

1.  Sun H. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract,2022,183:109119 CSCD被引 392    
2.  Lim L L. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care,2018,41:1312-1320 CSCD被引 1    
3.  Guan Z. Artificial intelligence in diabetes management: advancements, opportunities, and challenges. Cell Rep Med,2023,4:101213 CSCD被引 3    
4.  Ali S R. Using ChatGPT to write patient clinic letters. Lancet Digit Health,2023,5:e179-e181 CSCD被引 4    
5.  Thirunavukarasu A J. Large language models in medicine. Nat Med,2023,29:1930-1940 CSCD被引 21    
6.  Singhal K. Large language models encode clinical knowledge. Nature,2023,620:172-180 CSCD被引 42    
7.  Moschonis G. Effectiveness, reach, uptake, and feasibility of digital health interventions for adults with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Lancet Digit Health,2023,5:e125-e143 CSCD被引 2    
8.  Wang X. ChatGPT: Promise and challenges for deployment in low-and middle-income countries. Lancet Reg Health West Pac,2023,41:100905 CSCD被引 1    
9.  Zhou C. Detecting hallucinated content in conditional neural sequence generation. arXiv:201102593,2020 CSCD被引 1    
10.  Yu K H. Artificial intelligence in healthcare. Nat Biomed Eng,2018,2:719-731 CSCD被引 33    
11.  Haug C J. Turning the tables-The new European general data protection regulation. N Engl J Med,2018,379:207-209 CSCD被引 1    
12.  Li Y. ChatDoctor: A medical chat model fine-tuned on a large language model meta-AI (LLaMA) using medical domain knowledge. Cureus,2023,15:e40895 CSCD被引 2    
13.  Wang G. Optimized glycemic control of type 2 diabetes with reinforcement learning: A proof-of-concept trial. Nat Med,2023,29:2633-2642 CSCD被引 5    
14.  Shuster K. Language models that seek for knowledge: Modular search & generation for dialogue and prompt completion. arXiv:220313224,2022 CSCD被引 1    
15.  Lim Z W. Benchmarking large language models' performances for myopia care: A comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard. EBioMedicine,2023,95:104770 CSCD被引 7    
16.  Henry K E. Human-machine teaming is key to AI adoption: Clinicians' experiences with a deployed machine learning system. NPJ Digit Med,2022,5:97 CSCD被引 1    
引证文献 0 篇
论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号