锆石氧逸度对相山地区火山岩型铀矿床成矿母岩判别的指示意义
Zircon oxygen fugacity as a tracer to distinguish the parent rock volcanic-hosted uranium mineralization in the Xiangshan area,South China
查看参考文献86篇
文摘
|
我国华南广泛分布火山-侵入杂岩体,其中个别岩体中伴有火山岩型铀矿床的产出,因此如何区分含铀矿与不含铀矿岩体成为矿床学界关注的重要课题。本文以相山地区含铀火山-侵入岩以及周边不含铀矿侵入岩为例,开展锆石LA-ICP-MS U-Pb年龄和微量元素研究。结果显示含矿花岗斑岩的形成年龄为133.7±1.6 Ma(云际),含矿碎斑熔岩的形成年龄为132.8±1.5 Ma(邹家山),不含矿花岗斑岩的年龄为134.9±1.3 Ma(七琴)和133.3±1.3 Ma(桃溪),其在误差范围内基本一致。含矿与不含矿岩体的锆石Ce~(4+)/Ce~(3+)比值由高到低依次为:邹家山22.12~68.75(平均值为45.61),云际19.02~43.48(平均值为27.64),七琴7.99~22.03(平均值为15.63),桃溪9.70~22.40(平均值为16.19)。锆石Ti含量温度计结果显示含矿岩体锆石的结晶温度比不含矿岩体的锆石结晶温度相对更高。结合晶格应变模型和锆石Ti温度计,获得前者的绝对氧逸度亦高于后者。本研究发现相山地区含矿火山-侵入岩体中锆石的Ce~(4+)/Ce~(3+)比值普遍大于22,笔者提出锆石氧逸度可以作为判别火山-侵入岩体是否含矿的一个可能指标。此外,含矿与不含矿岩体中全岩铀含量的高低与氧逸度呈明显的正相关,我们推断含矿岩体具有较高的氧逸度可能指示了其岩体母岩浆相应地具有更高的铀含量。综合前人的研究资料,笔者发现含铀岩体的氧逸度明显低于斑岩型铜-钼矿,但与花岗岩型钨矿以及火山岩型银-铅-锌矿类似。因此,氧逸度的相对高低对铜-钼、钨-钼、铀及银-铅-锌赋矿岩体的差异性成矿有明显制约作用,可能还间接反映了地幔物质贡献比例的多少。 |
其他语种文摘
|
Volcanic-intrusive complexes are widely distributed in South China,and some of them are accompanied by volcanic-related uranium deposits.Therefore,distinguishing between ore-bearing and orefree rocks has become an important hot topic in the field of ore deposits.This study focuses on examining the composition of trace elements in zircon using LA-ICP-MS,determining the U-Pb ages,and analyzing the characteristics of whole-rock trace elements in both ore-bearing volcanic-intrusive rocks and ore-free intrusive rocks in the Xiangshan area of South China.The results show that the ages of ore-bearing porphyroclastic lava (Zoujiashan) and granite porphyry (Yunji) are 132.8±1.5 Ma and 133.7±1.6 Ma,respectively.Correspondingly,the ages of the ore-free Qiqin and Taoxi granite porphyry are 134.9±1.3 Ma and 133.3±1.3 Ma,respectively.Those ages of the ore-bearing and ore-free plutons are basically synchronous within the error range.The ratios of zircon Ce~(4+)/Ce~(3+) in the ore-bearing and ore-free rocks range from high to low as follows:Zoujiashan 22.12~68.75 (average 45.61),Yunji 19.02~43.48(average 27.64),Qiqin 7.99~22.03 (average 15.63),Taoxi 9.70~22.40 (average 16.19).The results obtained from the zircon Ti content thermometer suggest that the zircon crystallization temperature of the ore-bearing rocks is relatively higher than that of the ore-free rocks.Furthermore,when considering the lattice strain model and zircon Ti thermometer,it can be inferred that the absolute oxygen fugacity of the former is also higher than that of the latter.This study indicates that the Ce~(4+)/Ce~(3+) ratio of zircon in the ore-bearing volcanic-intrusive rock in the Xiangshan area generally exceeds 22.Therefore,we propose that the oxygen fugacity of zircon can be used as a potential indicator to determine whether the rock shows orebearing characteristics.Moreover,the uranium content of the whole rock in both the ore-bearing and orefree rocks shows a significant positive correlation with the oxygen fugacity.This suggests that the high oxygen fugacity of the ore-bearing rocks may indicate a higher uranium content in the parent magma of these rocks.Based on previous research,it is suggested that the oxygen fugacity of uranium-bearing rocks is significantly lower than that of porphyry copper-molybdenum ore deposits,but similar to that of granitetype tungsten ore and volcanic rock-type silver-lead-zinc ore.Therefore,the level of oxygen fugacity serves as an important constraint on the differential mineralization types of Cu-Mo,W-Mo,U,and Ag-Pb-Zn ore-bearing rocks,which may indirectly reflect a substantial contribution from mantle materials. |
来源
|
地质学报
,2024,98(1):181-199 【核心库】
|
DOI
|
10.19762/j.cnki.dizhixuebao.2023019
|
关键词
|
氧逸度
;
锆石微量元素
;
相山铀矿
;
控矿因素
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
东华理工大学, 核资源与环境国家重点实验室, 江西, 南昌, 330013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0001-5717 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
贵州省项目
|
文献收藏号
|
CSCD:7643631
|
参考文献 共
86
共5页
|
1.
Arevalo J R. Tungsten geochemistry and implications for understandingthe earth's interior.
Earth and Planetary Science Letters,2008,272(3):656-665
|
CSCD被引
15
次
|
|
|
|
2.
Ballard J R. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile.
Contributions to Mineralogy and Petrology,2002,144(3):347-364
|
CSCD被引
233
次
|
|
|
|
3.
Blundy J. Prediction of crystal-melt partition coefficients from elastic moduli.
Nature,1994,372:452-454
|
CSCD被引
60
次
|
|
|
|
4.
Burnham A D. An experimental study of trace element partitioning between zircon andmelt as a function of oxygen fugacity.
Geochimica et Cosmochimica Acta,2012,95:196-212
|
CSCD被引
53
次
|
|
|
|
5.
Cao Mingjian. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, central Lhasa subterrane, Tibet.
Mineralium Deposita,2017,53(3):1-11
|
CSCD被引
1
次
|
|
|
|
6.
Chabiron A. Possible uranium sources for the largest uranium district associated with volcanism: The Streltsovka caldera (Transbaikalia, Russia).
Mineralium Deposita,2003,38:127-140
|
CSCD被引
25
次
|
|
|
|
7.
Chelle-Michou C. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru).
Lithos,2014,198:129-140
|
CSCD被引
18
次
|
|
|
|
8.
Coogan L A. Do the trace element compositions of detrital zircons require Hadean continental crust.
Geology,2006,34(8):633-636
|
CSCD被引
7
次
|
|
|
|
9.
Cuney M. The extreme diversity of uranium deposits.
Mineralium Deposita,2009,44:3-9
|
CSCD被引
39
次
|
|
|
|
10.
Cuney M. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenies.
Bulletin de Mineralogie,1987,110:235-247
|
CSCD被引
12
次
|
|
|
|
11.
Dilles J H. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas.
Economic Geology,2015,110(1):241-251
|
CSCD被引
35
次
|
|
|
|
12.
Dong Pengsheng. Late Triassic porphyries in the Zhongdian Arc, eastern Tibet: Origin and implications for Cu mineralization.
Geological Magazine,2020,157(2):275-288
|
CSCD被引
2
次
|
|
|
|
13.
Eugster H P. Stability relations of the ferruginous biotite, annite.
Journal of Petrology,1962,3:82-125
|
CSCD被引
32
次
|
|
|
|
14.
Ferry J M. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers.
Contributions to Mineralogy and Petrology,2007,154(4):429-437
|
CSCD被引
313
次
|
|
|
|
15.
Friedrich M. Uranium geochemistry in peraluminous leucogranites.
Uranium,1987(3):353-385
|
CSCD被引
1
次
|
|
|
|
16.
Gao Xue. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, northwest Yunnan, China.
Ore Geology Reviews,2017,91:945-962
|
CSCD被引
13
次
|
|
|
|
17.
Hanchar M. Problems associated with the determination of rare earth elements of a "gem" quality zircon by inductively coupled plasma-mass spectrometry.
Geostandards Newsletter,2001,25(3):229-237
|
CSCD被引
1
次
|
|
|
|
18.
Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest earth.
Science,2005,308(5723):841-844
|
CSCD被引
213
次
|
|
|
|
19.
Hou Zengqian. Further discussion on porphyry Cu-Mo-Au deposit formation in mainland China.
Earth Science Frontiers,2020,27(2):20-44
|
CSCD被引
7
次
|
|
|
|
20.
Hu Ruizhong. Uranium metallogenies in South China and its relationship to crustal extension during the Cretaceous to Tertiary.
Economic Geology,2008,103:583-598
|
CSCD被引
125
次
|
|
|
|
|