智能反射面辅助的太赫兹卫星通信鲁棒安全波束成形算法
Robust Secure Beamforming Algorithm for IRS-Aided Terahertz Satellite Communication Systems
查看参考文献24篇
文摘
|
本文针对智能反射面辅助的太赫兹卫星通信系统,提出一种基于用户非完美信道状态信息的鲁棒安全波束成形算法,以提升系统的物理层安全性能.首先,在智能反射面辅助的太赫兹卫星系统采用多播传输技术向多个合法用户发送信号,并且在其覆盖区域内存在多个窃听者的场景下,建立以卫星发射功率最小化为目标函数,合法用户的可达速率和可达安全速率满足要求为约束的联合优化问题.其次,考虑到非完美信道状态信息导致可达速率和可达安全速率均为非凸的概率约束,提出采用二阶泰勒展开和S程序方法对其进行转化,并进一步通过半正定规划完成智能反射面的相移矩阵和卫星发射功率的联合优化设计.最后,计算机仿真验证了所提算法的有效性和优越性. |
其他语种文摘
|
In this paper, a robust secure beamforming scheme based on imperfect channel state information (CSI) is proposed for the intelligent reflecting surface (IRS)-aided terahertz satellite communication systems, in order to improve the physical layer security performance of the system. First, we consider a scenario where an IRS-aided terahertz satellite system adopts multicast technique to serve multiple legitimate users in the presence of multiple eavesdroppers in the coverage area, based on which a joint optimization problem is formulated in order to minimize the satellite transmit power under the constraints constructed by the achievable rate (AR) and the achievable secrecy rate (ASR) requirements of each legitimate users. Secondly, considering that AR and ASR are non-convex probabilistic constraints caused by imperfect CSI, an approach associated with the second-order Taylor expansion and S-procedure is proposed to transform the non-convex constraints. Further, the joint optimization scheme of the phase shift of IRS and the transmit power of satellite can be solved by semidefinite programming. Finally, the effectiveness and superiority of the proposed scheme are verified by simulation results. |
来源
|
电子学报
,2023,51(10):2715-2723 【核心库】
|
DOI
|
10.12263/DZXB.20221285
|
关键词
|
卫星通信
;
智能反射面
;
物理层安全
;
鲁棒波束成形
;
太赫兹频段
|
地址
|
南京邮电大学通信与信息工程学院, 江苏, 南京, 210003
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
重点国际合作项目
;
南京邮电大学引进人才项目
;
江苏省研究生科研与实践创新计划项目
|
文献收藏号
|
CSCD:7607854
|
参考文献 共
24
共2页
|
1.
Kodheli O. Satellite communications in the new space era: A survey and future challenges.
IEEE Communications Surveys & Tutorials,2020,23(1):70-109
|
CSCD被引
27
次
|
|
|
|
2.
Akyildiz I F. TeraNets: Ultrabroadband communication networks in the terahertz band.
IEEE Wireless Communications,2014,21(4):130-135
|
CSCD被引
16
次
|
|
|
|
3.
Tekbiyik K. Reconfigurable intelligent surfaces empowered THz communication in LEO satellite networks.
IEEE Access,2022,10:121957-121969
|
CSCD被引
1
次
|
|
|
|
4.
Lin M. Integrated 5Gsatellite networks: A perspective on physical layer reliability and security.
IEEE Wireless Communications,2020,27(6):152-159
|
CSCD被引
6
次
|
|
|
|
5.
林敏. 多播传输模式下的卫星通信安全波束成形算法.
电子学报,2022,50(1):98-105
|
CSCD被引
4
次
|
|
|
|
6.
Dai L L. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results.
IEEE Access,2020,8:45913-45923
|
CSCD被引
33
次
|
|
|
|
7.
卢汉成. 智能反射表面辅助的无线通信系统的物理层安全综述.
通信学报,2022,43(2):171-184
|
CSCD被引
7
次
|
|
|
|
8.
Cui M. Secure wireless communication via intelligent reflecting surface.
IEEE Wireless Communications Letters,2019,8(5):1410-1414
|
CSCD被引
58
次
|
|
|
|
9.
Hong S. Robust transmission design for intelligent reflecting surface aided secure communications.
GLOBECOM 2020-2020 IEEE Global Communications Conference,2021:1-6
|
CSCD被引
1
次
|
|
|
|
10.
Xu S. Intelligent reflecting surface enabled secure cooperative transmission for satelliteterrestrial integrated networks.
IEEE Transactions on Vehicular Technology,2021,70(2):2007-2011
|
CSCD被引
8
次
|
|
|
|
11.
肖圣杰. 智能反射面辅助的星地融合网络鲁棒安全波束成形算法.
物理学报,2022,71(7):078401
|
CSCD被引
1
次
|
|
|
|
12.
Zheng B X. Intelligent reflecting surface-aided LEO satellite communication: Cooperative passive beamforming and distributed channel estimation.
IEEE Journal on Selected Areas in Communications,2022,40(10):3057-3070
|
CSCD被引
5
次
|
|
|
|
13.
Tekblylk K. Energy-efficient RIS-assisted satellites for IoT networks.
IEEE Internet of Things Journal,2022,9(16):14891-14899
|
CSCD被引
1
次
|
|
|
|
14.
Wang Z N. Robust beamforming for enhancing user fairness in multibeam satellite systems with NOMA.
IEEE Transactions on Vehicular Technology,2022,71(1):1010-1014
|
CSCD被引
4
次
|
|
|
|
15.
Han C. Propagation modeling for wireless communications in the terahertz band.
IEEE Communications Magazine,2018,56(6):96-101
|
CSCD被引
18
次
|
|
|
|
16.
International Telecommunication Union Radiocommunication Sector Std..
Specific attenuation model for rain for use in prediction methods: P.838-3,2022
|
CSCD被引
1
次
|
|
|
|
17.
International Telecommunication Union Radiocommunication Sector Std..
Attenuation due to clouds and fog: P.840-6,2022
|
CSCD被引
1
次
|
|
|
|
18.
Yin L F. Rate-splitting multiple access for satellite-terrestrial integrated networks: Benefits of coordination and cooperation.
IEEE Transactions on Wireless Communications,2023,22(1):317-332
|
CSCD被引
1
次
|
|
|
|
19.
Yue M C. A robust design for MISO physical-layer multicasting over line-of-sight channels.
IEEE Signal Processing Letters,2016,23(7):939-943
|
CSCD被引
2
次
|
|
|
|
20.
Wang J. Robust beamforming and phase shift design for IRS-enhanced multiuser MISO downlink communication.
IEEE International Conference on Communications (ICC),2020:1-6
|
CSCD被引
3
次
|
|
|
|
|