4 μm单模单偏振硫系负曲率反谐振光纤
Single-Mode Single-Polarization Chalcogenide Negative-Curvature Hollow- Core Fibers at 4 μm
查看参考文献58篇
文摘
|
提出并研究了一种以硫系玻璃为基底材料的红外负曲率反谐振光纤,该光纤在4 μm附近可低损耗、单模单偏振传输光信号。利用有限元法对其性能进行数值仿真,结果表明:该光纤在3.99~4.00 μm波长范围内具有良好的单模单偏振特性,特别是在4 μm波长处,偏振消光比和高阶模式消光比分别达到491和649,表明其保偏性能具有很好的稳定性;该光纤具有低损耗传输特性,在3.92~4.01 μm波长范围内,x偏振基模均可维持在平坦且损耗很低的反谐振区域内,尤其在4 μm波长处,x偏振基模的损耗仅为1.8×10~(-4) dB/m;该光纤具有良好的抗弯曲能力,在单模单偏振传输下,弯曲损耗始终小于10-3 dB/m。该红外负曲率反谐振光纤不仅在中红外波段的通信和医疗系领域具有良好的应用前景,也为工作在4 μm波段的量子级联探测器提供了纯净光源。 |
其他语种文摘
|
Objective As one of the important properties of the light field, polarization plays an important role in the interaction between light and matter. The modulation of polarization plays an indispensable role in optical communication systems, fiber sensors, fiber lasers, and other fields. However, in view of the twist, defects, environment perturbations, and other factors in the process of optical fiber manufacturing, the manufactured optical fiber is not completely uniform, which introduces random birefringence and leads to unpredictable polarization states. Therefore, it is of great practical value to study optical fibers with excellent polarization states. Although the existing single-polarization single-mode negativecurvature hollow-core fiber has the advantages of simple structure, easy preparation, endless single-mode transmission, and low loss, due to the limitation of research habits and optical materials, the current research mainly focuses on common communication bands. But obviously, the mid-infrared band will become the next hot band of the negative-curvature hollow-core fiber. Research shows that a wavelength of 3-5 μm plays an important role in national defense, medical care, communications, and other fields, especially near the wavelength of 4 μm, which is an ideal band for quantum cascade detectors to detect low-level light. Single-mode single-polarization light helps to provide a more pure light source for quantum cascade detectors. Therefore, it is of great practical significance to study the single-mode single-polarization negative-curvature hollow-core fiber with a wavelength of 4 μm. Methods A hollow-core anti-resonant fiber composed of six nested tubes working near 4 μm is designed, which can transmit single-mode single-polarization with low loss. The influence of structural parameters on fiber performance is calculated by using the control variable method. The capillary wall thickness will lead to an obvious change in the fiber loss with the working band, which is the key factor affecting the characteristics of the negative-curvature hollow-core antiresonant fiber. Therefore, the capillary wall thickness is analyzed and optimized. Through the scanning study of the capillary wall thickness, the local optimal parameter values of the minimum fundamental mode loss and the maximum highorder mode extinction ratio in the 4 μm band are determined, and the design goal of the single-mode performance of the fiber is successfully realized. The second step is to optimize the capillary radius. This parameter mainly affects the polarization state of the fiber, and different parameter combinations of the six inner tube radii correspond to different implementation effects. The optimization of capillary radius successfully achieves single-polarization operation in a singlemode state. In the third step, the core diameter of the fiber is optimized. Although the study does not reflect the further optimization effect of the parameters that have been optimized and determined in the previous steps, the parameter design still retains the effective mode area and the maximum transmission power tolerance value of the fiber. The fourth step is to study and characterize the bending resistance of optical fiber. Research shows that this design fully meets the preset requirements for bending resistance and verifies that the natural advantages of negative-curvature hollow-core anti-resonant fibers, such as large effective mode field area and less substrate material coverage, can contribute to the bending resistance of the fiber. Results and Discussions A negative-curvature hollow-core fiber with low-loss single-mode single-polarization transmission is proposed and analyzed by the finite element method. By calculating the influence of fiber parameters on the fiber structure, the high-order mode extinction ratio reaches 163 (Fig. 3), and the fiber successfully realizes single-mode transmission. |
来源
|
光学学报
,2023,43(19):1906003 【核心库】
|
DOI
|
10.3788/AOS230573
|
关键词
|
光纤光学
;
负曲率空芯光纤
;
空芯反谐振光纤
;
单模
;
单偏振
;
有限元法
|
地址
|
1.
燕山大学理学院, 亚稳材料制备技术与科学国家重点实验室;;河北省微结构材料物理重点实验室, 河北, 秦皇岛, 066004
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
物理学 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
河北省自然科学基金
;
中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究基金
|
文献收藏号
|
CSCD:7588211
|
参考文献 共
58
共3页
|
1.
Noda J. Polarization-maintaining fibers and their applications.
Journal of Lightwave Technology,1986,4(8):1071-1089
|
CSCD被引
40
次
|
|
|
|
2.
Wei C L. Polarization-filtering and polarization-maintaining low-loss negative curvature fibers.
Optics Express,2018,26(8):9528-9540
|
CSCD被引
9
次
|
|
|
|
3.
Kumar S. LSPR-based cholesterol biosensor using hollow core fiber structure.
IEEE Sensors Journal,2019,19(17):7399-7406
|
CSCD被引
4
次
|
|
|
|
4.
Habib M S. Enhanced birefringence in conventional and hybrid anti-resonant hollowcore fibers.
Optics Express,2021,29(8):12516-12530
|
CSCD被引
1
次
|
|
|
|
5.
Chen S Q. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure.
Optics Express,2008,16(17):13016-13023
|
CSCD被引
2
次
|
|
|
|
6.
Smith A M. Birefringence induced by bends and twists in singlemode optical fiber.
Applied Optics,1980,19(15):2606-2611
|
CSCD被引
7
次
|
|
|
|
7.
Imoto N. Birefringence in singlemode optical fiber due to elliptical core deformation and stress anisotropy.
IEEE Journal of Quantum Electronics,1980,16(11):1267-1271
|
CSCD被引
3
次
|
|
|
|
8.
Nishizawa N. All-polarizationmaintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber.
Optics Express,2008,16(13):9429-9435
|
CSCD被引
10
次
|
|
|
|
9.
Piliarik M. Surface plasmon resonance sensor based on a single-mode polarizationmaintaining optical fiber.
Sensors and Actuators B,2003,90(1/2/3):236-242
|
CSCD被引
17
次
|
|
|
|
10.
Burns W K. Fiber-optic gyroscope with polarization-holding fiber.
Optics Letters,1983,8(10):540-542
|
CSCD被引
2
次
|
|
|
|
11.
Burns W K. Measurement of polarization-mode dispersion in high-birefringence fiber.
Optics Letters,1983,8(3):195-197
|
CSCD被引
1
次
|
|
|
|
12.
邹欢欢. 基于偏振串扰分析仪的LiNbO_3集成Y波导的测试方法.
光学学报,2020,40(6):0613001
|
CSCD被引
3
次
|
|
|
|
13.
赵畅. 基于“耦合-耦合-吸收”机理的超宽带单模单偏振微结构光纤.
光学学报,2023,43(2):0206003
|
CSCD被引
1
次
|
|
|
|
14.
Poletti F. Nested antiresonant nodeless hollow core fiber.
Optics Express,2014,22(20):23807-23828
|
CSCD被引
24
次
|
|
|
|
15.
Habib M S. Single-mode, low loss hollow-core anti-resonant fiber designs.
Optics Express,2019,27(4):3824-3836
|
CSCD被引
9
次
|
|
|
|
16.
林华. 基于金属-介质-金属多层膜结构的空芯光纤折射率传感器.
光学学报,2018,38(6):0606006
|
CSCD被引
8
次
|
|
|
|
17.
刘营. 八边形空芯微结构光纤的制备和特性分析.
应用激光,2014,34(4):341-345
|
CSCD被引
2
次
|
|
|
|
18.
Saitoh K. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms.
Optics Express,2006,14(16):7342-7352
|
CSCD被引
5
次
|
|
|
|
19.
Fini J M. Aircore microstructure fibers with suppressed higherorder modes.
Optics Express,2006,14(23):11354-11361
|
CSCD被引
4
次
|
|
|
|
20.
Benabid F. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.
Science,2002,298(5592):399-402
|
CSCD被引
73
次
|
|
|
|
|