帮助 关于我们

返回检索结果

CT影像加权组学评分预测非小细胞肺癌的免疫治疗疗效
CT-Based Weighted Radiomic Score Predicts Tumor Response to Immunotherapy in Non-Small Cell Lung Cancer

查看参考文献31篇

朱振宸 1   陈闽江 2   宋兰 1 *   王金华 1   胡歌 3   韩伟 4   谭卫雄 5   周振 5   隋昕 1   宋伟 1   金征宇 1  
文摘 目的通过治疗前胸部增强CT肺内多病灶组学特征构建加权组学评分模型,预测非小细胞肺癌患者接受程序性死亡受体1 (PD-1)/ PD配体1 (PD-L1)免疫治疗的疗效。方法回顾性收集北京协和医院2015年6月至2022年2月接受PD-1/ PD-L1免疫治疗的非小细胞肺癌病例。根据临床结局分为有效组(部分缓解或完全缓解)和无效组(疾病稳定或疾病进展)。从治疗前动脉期CT图像提取多病灶影像组学,通过基于注意力机制的多示例学习算法在病例水平获得加权组学特征,采用Logistic回归建立加权评分模型。采用受试者工作特征曲线下面积(AUC)分别比较加权评分模型、PD-L1模型、临床模型、加权评分+ PD-L1模型和综合模型预测肿瘤治疗疗效的效能。结果最终纳入237例患者,随机分为训练集(n =165)和测试集(n =72)。训练集和测试集患者的平均年龄分别为(64 ±9)岁和(62 ±8)岁。加权评分模型预测免疫治疗疗效的AUC在训练集和测试集中分别为0.85和0.80,高于PD-L1-1模型(Z = 37.30, P < 0.001和Z = 5.69, P =0.017)、PD-L1-50模型(Z =38.36, P <0.001和Z =17.99, P <0.001)和临床模型(Z =11.40, P < 0.001和Z =5.76, P =0.016)的预测能力,与加权评分+ PD-L1模型和综合模型比较差异无统计学意义(P均>0.05)。结论基于治疗前增强CT影像多病灶加权组学评分能够预测非小细胞肺癌患者接受免疫治疗的疗效。
其他语种文摘 Objective To develop a CT-based weighted radiomic model that predicts tumor response to programmed death-1 (PD-1)/ PD-ligand 1 (PD-L1)immunotherapy in patients with non-small cell lung cancer. Methods The patients with non-small cell lung cancer treated by PD-1/ PD-L1 immune checkpoint inhibitors in the Peking Union Medical College Hospital from June 2015 to February 2022 were retrospectively studied and classified as responders (partial or complete response)and non-responders (stable or progressive disease). Original radiomic features were extracted from multiple intrapulmonary lesions in the contrast-enhanced CT scans of the arterial phase, and then weighted and summed by an attention-based multiple instances learning algorithm. Logistic regression was employed to build a weighted radiomic scoring model and the radiomic score was then calculated. The area under the receiver operating characteristic curve (AUC)was used to compare the weighted radiomic scoring model, PD-L1 model, clinical model, weighted radiomic scoring + PD-L1 model, and comprehensive prediction model. Results A total of 237 patients were included in the study and randomized into a training set (n =165)and a test set (n =72), with the mean ages of (64 ±9)and (62 ±8)years, respectively. The AUC of the weighted radiomic scoring model reached 0.85 and 0.80 in the training set and test set, respectively, which was higher than that of the PD-L1-1 model (Z = 37.30, P < 0.001 and Z = 5.69, P = 0.017), PD-L1-50 model (Z = 38.36, P < 0.001 and Z = 17.99, P < 0.001), and clinical model (Z = 11.40, P <0.001 and Z =5.76, P =0.016). The AUC of the weighted scoring model was not different from that of the weighted radiomic scoring + PD-L1 model and the comprehensive prediction model (both P >0.05). Conclusion The weighted radiomic scores based on pre-treatment enhanced CT images can predict tumor responses to immunotherapy in patients with non-small cell lung cancer.
来源 中国医学科学院学报 ,2023,45(5):794-802 【核心库】
DOI 10.3881/j.issn.1000-503X.15705
关键词 非小细胞肺癌 ; 免疫检查点抑制剂 ; CT ; 加权组学评分
地址

1. 中国医学科学院北京协和医学院北京协和医院放射科, 北京, 100730  

2. 中国医学科学院北京协和医学院北京协和医院呼吸与危重症医学科, 北京, 100730  

3. 中国医学科学院北京协和医学院北京协和医院转化医学中心, 北京, 100730  

4. 中国医学科学院基础医学研究所流行病与卫生统计学系, 北京, 100005  

5. 北京深睿博联科技有限责任公司, 北京, 100081

语种 中文
文献类型 研究性论文
ISSN 1000-503X
学科 临床医学;肿瘤学
基金 中国医学科学院医学与健康科技创新工程临床与转化医学研究专项重点项目 ;  国家自然科学基金 ;  北京市科学技术委员会AI +健康协同创新培育项目 ;  中华国际医学交流基金会SKY影像科研基金 ;  科技创新2030-新一代人工智能重大项目
文献收藏号 CSCD:7587661

参考文献 共 31 共2页

1.  Chen P. Non-small cell lung cancer in China. Cancer Commun (Lond),2022,42(10):937-970 CSCD被引 20    
2.  Siegel R L. Cancer statistics, 2021. CA Cancer J Clin,2021,71(1):7-33 CSCD被引 785    
3.  Memmott R M. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors. J Thorac Oncol,2021,16(7):1086-1098 CSCD被引 3    
4.  Horn L. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med,2018,379(23):2220-2229 CSCD被引 108    
5.  Tambo Y. Real-world efficacy of first-line pembrolizumab in patients with advanced or recurrent non-small-cell lung cancer and high PD-L1 tumor expression. Clin Lung Cancer,2020,21(5):e366-e379 CSCD被引 2    
6.  Herbst R S. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced nonsmall-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet,2016,387(10027):1540-1550 CSCD被引 241    
7.  中华医学会肿瘤学分会. 中华医学会肺癌临床诊疗指南(2022版). 中华医学杂志,2022,102(23):1706-1740 CSCD被引 23    
8.  王佳慧. 基于PD-1/PD-L1抑制剂的非小细胞肺癌免疫治疗预测标志物的研究进展. 现代肿瘤医学,2021,29(10):1822-1825 CSCD被引 2    
9.  Gandhi L. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med,2018,378(22):2078-2092 CSCD被引 197    
10.  Paz-Ares L. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med,2018,379(21):2040-2051 CSCD被引 134    
11.  Hellmann M D. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med,2019,381(21):2020-2031 CSCD被引 78    
12.  Paz-Ares L. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol,2021,22(2):198-211 CSCD被引 44    
13.  Yin X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol,2022,86(Pt 2):146-159 CSCD被引 2    
14.  Ligero M. A CT-based radiomics signature is associated with response to immune checkpoint inhibitors in advanced solid tumors. Radiology,2021,299(1):109-119 CSCD被引 8    
15.  Nardone V. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab. Oncol Lett,2020,19(2):1559-1566 CSCD被引 3    
16.  Vaidya P. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J Immunother Cancer,2020,8(2):e001343 CSCD被引 8    
17.  Liu Y. Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced non-small-cell lung cancer. Front Oncol,2021,11:657615 CSCD被引 2    
18.  Zhang X. Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach. Eur Radiol,2020,30(10):5602-5610 CSCD被引 1    
19.  Li Z. A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning. Med Image Anal,2021,69:101978 CSCD被引 2    
20.  Lu M Y. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng,2021,5(6):555-570 CSCD被引 14    
引证文献 1

1 孙天生 非小细胞肺癌免疫治疗疗效的预测生物标志物研究进展 中国肺癌杂志,2024,27(6):459-465
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号