工艺参数对下注式铸轧2624铝合金偏析行为和性能影响
Effect of process parameters on segregation behavior and properties of bottom castrolling 2624aluminum alloy
查看参考文献16篇
文摘
|
借助模拟铸轧区流场,并采用SEM、EPMA、DSC、电导率和常温拉伸性能测试手段,详细研究了不同工艺参数对下注式双辊铸轧2624铝合金偏析行为和性能的影响,分析了铸轧过程中偏析的产生机理。结果表明:下注式双辊铸轧的2624铝合金边部出现大尺寸带状偏析,溶质元素呈现宏观反偏析现象;浇注温度和铸轧速率的降低可以增强涡流的峰值速率,减弱宏观偏析程度;冷却速率的增强可以减弱微观偏析程度,降低电导率;此外,铸轧板的屈服强度、抗拉强度和伸长率随着浇注温度和铸轧速率的降低逐渐增高,合金的力学性能得到改善。 |
其他语种文摘
|
The effects of different process parameters on the segregation behavior and properties of bottom twin-roll casting 2624aluminum alloy were studied in detail by simulating the flow field in the cast-rolling zone and using SEM,EPMA,DSC,electrical conductivity and tensile properties at room temperature.The mechanism of segregation in the cast-rolling process was analyzed.The results show that the large size banded segregation appears at the edge of bottom twin-roll casting 2624aluminum alloy,solute elements exhibit macroscopic inverse segregation.The decrease of pouring temperature and casting speed can enhance the peak velocity of vortex and reduce the degree of macrosegregation。 The increase of cooling rate can weaken the degree of microsegregation and reduce the conductivity.In addition,the yield strength,tensile strength and elongation of the cast-rolled sheet increase with the decrease of pouring temperature and casting speed,and the mechanical properties of the alloy are improved. |
来源
|
材料工程
,2023,51(10):126-135 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000981
|
关键词
|
2624铝合金
;
下注式双辊铸轧
;
工艺参数
;
偏析
|
地址
|
1.
东北大学, 轧制技术及连轧自动化国家重点实验室, 沈阳, 110819
2.
东北大学, 材料电磁过程研究教育部重点实验室, 沈阳, 110819
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7579871
|
参考文献 共
16
共1页
|
1.
Kabirian F. Negative to positive strain rate sensitivity in 5×××series aluminum alloys:experiment and constitutive modeling.
International Journal of Plasticity,2014,55:232-246
|
CSCD被引
9
次
|
|
|
|
2.
Zhang J. Structural,elastic and electronic properties ofθ(Al_2Cu)and S(Al_2CuMg)strengthening precipitates in Al-Cu-Mg series alloys:first-principles calculations.
Solid State Commun,2012,152(23):2100-2104
|
CSCD被引
16
次
|
|
|
|
3.
Wang Y. Dynamic compressive behavior of selected aluminum alloy at low temperature.
Materials Science and Engineering: A,2012,553:176-180
|
CSCD被引
6
次
|
|
|
|
4.
Tiamiyu A A. Crash-worthiness of a recently-developed AA 2624aluminum alloy:experimental studies.
Materials Science and Engineering:A,2019,766:138389
|
CSCD被引
3
次
|
|
|
|
5.
Lu B. Formation of banded intergranular segregation and control via micro-alloying in twin-roll casted Al-Zn-Mg-Cu alloy with high solidification interval.
Materialia,2022,22:101406
|
CSCD被引
4
次
|
|
|
|
6.
Lv Z. Centerline segregation mechanism of twin-roll cast A3003strip.
Journal of Alloys and Compounds,2015,643:270-274
|
CSCD被引
8
次
|
|
|
|
7.
Kim M S. Deformation-induced center segregation in twin-roll cast high-Mg Al-Mg strips.
Scripta Materialia,2018,152:69-73
|
CSCD被引
12
次
|
|
|
|
8.
Lee Y S. Process parameters and roll separation force in horizontal twin roll casting of aluminum alloys.
Journal of Materials Processing Technology,2015,218:48-56
|
CSCD被引
7
次
|
|
|
|
9.
Wang H B. Effects of twin-roll casting process parameters on the microstructure and sheet metal forming behavior of 7050aluminum alloy.
Journal of Materials Processing Technology,2016,233:186-191
|
CSCD被引
7
次
|
|
|
|
10.
Fu J. Influence of vortex effect on the central segregation defects of horizontal twin-roll casting Al-Mg-Mn-Zn-Cu-Cr alloy sheet.
Journal of Materials Research and Technology,2022,19:1021-1036
|
CSCD被引
3
次
|
|
|
|
11.
Zhou C. A novel research on the solute redistribution phenomenon of sub-rapid twin-roll cast Al-50 wt.%alloy treated by semi-solid heat treatment.
Journal of Materials Research and Technology,2021,15:6295-6311
|
CSCD被引
1
次
|
|
|
|
12.
Zhao H. Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy strip.
Journal of Materials Processing Technology,2011,211(6):1197-1202
|
CSCD被引
24
次
|
|
|
|
13.
张颂阳. 半固态铸轧成形技术的最新研究.
南昌大学学报,2006,28(4):339-343
|
CSCD被引
2
次
|
|
|
|
14.
Li Y J. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003alloy during heating and homogenization.
Acta Materialia,2003,51(12):3415-3428
|
CSCD被引
41
次
|
|
|
|
15.
Gaumann M. Nucleation ahead of the advancing interface in directional solidification.
Materials Science and Engineering:A,1997,226/228:763-769
|
CSCD被引
32
次
|
|
|
|
16.
Cao Y F. Formation mechanism of channel segregation in carbon steels by inclusion flotation:X-ray microtomography characterization and multiphase flow modeling.
Acta Materialia,2016,107:325-336
|
CSCD被引
12
次
|
|
|
|
|