帮助 关于我们

返回检索结果

基于像差影响的星间角距修正方法
Correction Method of Inter Satellite Angular Distance Based on Aberration Effect

查看参考文献15篇

张凯胜 1,2   苏秀琴 1   刘凯 1  
文摘 为了有效地提高星模拟器的精度,针对经典星间角距数学公式没有考虑光学系统像差影响的问题,提出了一种基于像差影响的星间角距修正方法,建立了相关的数学模型并推导了相应的数学公式。并以球幕投影的星模拟器平台为例进行分析和实验测试,结合所建立的星间角距数学模型,对各星点的方位角和俯仰角进行曲线拟合,得到像差影响的星点位置误差拟合曲线,从而完成星间角距修正。实验结果表明,修正前星间角距误差为27.56 ″,修正后星间角距误差为16.96 ″,相对于修正前减小了10.60 ″。本文方法为有效提高星模拟器的仿真精度提供了理论基础。
其他语种文摘 Star sensors are high-precision space attitude measurement devices used in astronomical navigation to obtain the attitude of space vehicles by observing the angular distance of stars. As a key technical parameter of star simulators, the angular distance between stars is an important indicator of their testing accuracy. It represents the angular position relationship between any two-star points, and its size depends on the position of each star point. As an important component of a star simulator, optical systems can cause changes in star position due to coma, field curvature, astigmatism, and distortion. These changes can lead to discrepancies between the calculated inter-star angular distance and the theoretical inter-star angular distance, thereby affecting the accuracy of the simulation. Therefore, studying the impact of optical system aberrations on the inter-star angular distance is an important guarantee for ensuring the high accuracy of the star simulator. In order to effectively improve the accuracy of the star simulator, this paper addresses the issue that the conventional mathematical formula for calculating the inter-star angular distance does not account for the impact of aberrations in optical systems. As a solution, a method for correcting the inter-star angular distance based on aberration influence is proposed in this study. The method involves establishing a relevant mathematical model and deriving the corresponding mathematical formula. Then, taking the star simulator platform of spherical screen projection as an example, analysis and experimental testing were conducted. The test results showed the following maximum impacts of various aberrations on the inter-star angular distance: -10.04 ″ for coma aberration, -13.07 ″ for field curvature, - 2.92 ″ for astigmatism, and 34.78 ″ for distortion. Considering the compensation of each aberration on inter-star angular distance, the maximum total error of the influence of aberration on inter-satellite angular distance is 16.53 ″. Combining the established mathematical model of inter-satellite angular distance, curve fitting is performed on the azimuth and elevation angles of each star point to obtain a fitting curve for the position error of the star point affected by aberration, thereby completing inter-satellite angular distance correction. The experimental results show that the inter-satellite angular distance error before correction is 27.56 ″, and the inter-satellite angular distance error after correction is 16.96 ″, which is reduced by 10.60 ″ compared to the before correction. The research and experimental verification of inter-satellite angular distance correction methods for aberration effects provide a theoretical basis for effectively improving the simulation accuracy of satellite simulators.
来源 光子学报 ,2023,52(7):0712001 【核心库】
DOI 10.3788/gzxb20235207.0712001
关键词 像差 ; 星间角距 ; 数学模型 ; 曲线拟合 ; 修正
地址

1. 中国科学院西安光学精密机械研究所, 西安, 710119  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1004-4213
学科 天文学
基金 中国科学院战略高技术创新基金
文献收藏号 CSCD:7549371

参考文献 共 15 共1页

1.  Zhao Hui. A strap-down inertial Navigation/Spectrum Red-Shift/Star Sensor(SINS/SRS/SS) autonomous integrated system for spacecraft navigation. Sensors,2018,18(7):2039-2053 CSCD被引 2    
2.  Li Gang. Research on partitioning algorithm based on dynamic star simulator guide star catalog. IEEE Access,2021,15(99):1-7 CSCD被引 1    
3.  Ji Jin. A method for calibrating thrust of satellite based on the attitude variety on-orbit. IOP Conference Series: Materials Science and Engineering. 727(1),2020:012015-012021 CSCD被引 1    
4.  陈启梦. 标定型星模拟器设计与关键参数测试. 长春理工大学学报(自然科学版),2017,40(4):41-44 CSCD被引 2    
5.  李成浩. 高时空分辨率动态星模拟器设计. 光学精密工程,2020,28(3):515-525 CSCD被引 2    
6.  李光茜. 动态星模拟器星图模拟关键技术研究,2019 CSCD被引 3    
7.  Shi Qingshao. Semi-physical simulation system about remote sensing satellite attitude determination based on star sensor. Science of Surveying and Mapping,2012,37(5):204-203 CSCD被引 1    
8.  Chang Yong. Semi-physical simulation of the airborne InSAR based on rigorous geometric model and real navigation data. IOP Conference Series: Earth and Environmental Science. 17(14),2014:1-6 CSCD被引 1    
9.  孙高飞. 星敏感器地面标定设备的设计. 红外与激光工程,2013,42(10):2822-2827 CSCD被引 7    
10.  李学夔. 利用星角距对星敏感器主距进行标定的新方法. 半导体光电,2009,30(5):755-762 CSCD被引 6    
11.  陶雪. 高精度静态星模拟器研究,2013 CSCD被引 2    
12.  张勇. 基于星像位置误差估计星敏感器姿态角偏差的方法. 电子科技,2019,32(10):43-47 CSCD被引 1    
13.  邹阳阳. 基于畸变影响的动态星模拟器星点位置修正方法. 空间科学学报,2014,34(4):468-473 CSCD被引 5    
14.  谭迪. 光学像差对星点质心定位误差的影响分析. 红外与激光工程,2017,46(2):0217004 CSCD被引 4    
15.  袁旭沧. 光学设计,1983 CSCD被引 58    
引证文献 1

1 尹鹏 基于YOLOv5s的卫星光通信初始捕获方法(特邀) 激光与光电子学进展,2024,61(7):0706012
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号