Isoparametric Hypersurfaces Induced by Navigation in Lorentz Finsler Geometry
查看参考文献30篇
文摘
|
Using a navigation process with the datum (F, V), in which F is a Finsler metric and the smooth tangent vector field V satisfies F (-V (x)) > 1 everywhere, a Lorentz Finsler metric F can be induced. Isoparametric functions and isoparametric hypersurfaces with or without involving a smooth measure can be defined for F. When the vector field V in the navigation datum is homothetic, we prove the local correspondences between isoparametric functions and isoparametric hypersurfaces before and after this navigation process. Using these correspondences, we provide some examples of isoparametric functions and isoparametric hypersurfaces on a Funk space of Lorentz Randers type. |
来源
|
Acta Mathematica Sinica. English Series
,2023,39(8):1547-1564 【核心库】
|
DOI
|
10.1007/s10114-023-1187-x
|
关键词
|
Finsler metric
;
homothetic vector field
;
isoparametric function
;
isoparametric hypersur-face
;
Lorentz Finsler metric
;
Zermelo navigation
|
地址
|
1.
School of Mathematical Sciences, Capital Normal University, Beijing, 100048
2.
School of Microelectronics and Data Science, Anhui University of Technology, Maanshan, 243032
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
北京市自然科学基金
;
国家自然科学基金
;
安徽省自然科学基金
|
文献收藏号
|
CSCD:7542001
|
参考文献 共
30
共2页
|
1.
Bao D. An Introduction to Riemann–Finsler Geometry.
Grad. Texts in Math., Vol. 200,2000
|
CSCD被引
3
次
|
|
|
|
2.
Caponio E. Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes.
arXiv:1407.5494v5,2017
|
CSCD被引
1
次
|
|
|
|
3.
Cartan E. Sur des familles remarquables d'hypersurfaces isoparametriques dans les spaces spheriques (in French).
Math. Z,1939,45:335-367
|
CSCD被引
21
次
|
|
|
|
4.
Cecil T.
Geometry of Hypersurfaces. Springer Monographs in Mathematics,2015
|
CSCD被引
1
次
|
|
|
|
5.
Chi Q S. Isoparametric hypersurfaces with four principal curvatures, IV.
J. Differential Geom,2020,115:225-301
|
CSCD被引
9
次
|
|
|
|
6.
Foulon P. Ziller–Katok deformations of Finsler metrics.
2004 International Symposium on Finsler Geometry,2004:22-24
|
CSCD被引
1
次
|
|
|
|
7.
Foulon P. Zermelo deformation of Finsler metrics by Killing vector fields.
Electron. Res. Announc. Math. Sci,2018,25:1-7
|
CSCD被引
2
次
|
|
|
|
8.
Ge J Q. Chern conjecture and isoparametric hypersurfaces.
Differential Geometry, Adv. Lect. Math., 22,2012:49-60
|
CSCD被引
1
次
|
|
|
|
9.
Hahn J. Isoparametric hypersurfaces in the pseudo-riemannian space forms.
Math. Z,1984,187:195-208
|
CSCD被引
3
次
|
|
|
|
10.
He Q. Classifications of Isoparametric Hypersurfaces in Randers Space Forms.
Acta Math. Sin., Engl. Ser,2020,36:1049-1060
|
CSCD被引
4
次
|
|
|
|
11.
He Q. Isoparametric hypersurfaces in Finsler space forms.
Sci. China Math,2021,64(7):1463-1478
|
CSCD被引
3
次
|
|
|
|
12.
He Q. Isoparametric hypersurfaces in Minkowski spaces.
Differential Geom. Appl,2016,47:133-158
|
CSCD被引
8
次
|
|
|
|
13.
He Q. Isoparametric hypersurfaces in Funk spaces.
Sci. China Math,2017,60:2447-2464
|
CSCD被引
8
次
|
|
|
|
14.
Huang L B. On geodesics of Finsler metrics via navigation problem.
Proc. Amer. Math. Soc,2011,139:3015-3024
|
CSCD被引
2
次
|
|
|
|
15.
Javaloyes M A. Wind Riemannian spaceforms and Randers metrics of constrant flag curvature.
arXiv:1701.01273v1,2017
|
CSCD被引
1
次
|
|
|
|
16.
Javaloyes M A. Some criteria for wind Riemannian completeness and existence of Cauchy hypersurfaces.
Lorentzian Geometry and Related Topics, Geloma 2016, Springer Proceedings in Mathematics & Statistics, Vol. 211,2017:117-151
|
CSCD被引
1
次
|
|
|
|
17.
Javaloyes M A. Some properties of Zermelo navigation in pseudo-Finsler metrics under an arbitrary wind.
Houston J. Math,2018,44:1147-1179
|
CSCD被引
1
次
|
|
|
|
18.
Kostelecky V A. Riemann–Finsler geometry and Lorentz–violating kinematics.
Physics Letters B,2011,701:137-143
|
CSCD被引
3
次
|
|
|
|
19.
Mo X H. On curvature decreasing property of a class of navigation problems.
Publ. Math. Debrecen,2007,71:141-163
|
CSCD被引
3
次
|
|
|
|
20.
O'Neill B.
Semi-Riemannian Geometry with Applications to Relativity,1983
|
CSCD被引
10
次
|
|
|
|
|