层级孔喷涂粉末构筑及新一代长寿命热障涂层材料的研究进展
Review on thermal spraying powder with hierarchy pore structure and a new generation of long-life thermal barrier coating materials
查看参考文献84篇
文摘
|
广泛应用于航空发动机和地面燃气轮机中的热障涂层具有低热导率和良好的耐温性能,能够降低涡轮叶片表面温度,使高温结构件能在高于其熔点的环境中长时间高效率的服役。热障涂层的性能和寿命受到陶瓷层材料与其结构的直接影响,采用可控原料粉末对陶瓷涂层进行微观结构调节的方法可以减少涂层中的应变-应力失配,具有操作灵活、效果显著、调控范围广等优势。针对传统热障涂层应变容限低,抗热震性能不足等问题,本团队开发了静电喷雾技术结合相分离原理(ESP)制备新型热喷涂微球粉末的造粒理论和实现方法,实现了对粉末形貌结构的精确构筑,可用于制备核壳、均质和层级孔等全体系喷涂微球粉末。与传统的喷涂粉末相比,其中层级孔微球粉末(由特殊的纳米-微米层级跨尺度孔构成)呈现耐烧结、低热导率、高比强度及95%以上的高温波段反射率特点。使用层级孔微球粉末喷涂的热障涂层由于层级孔特征结构的保留,展现出优异的力学性能和隔热性能,热循环寿命提升2倍以上,热导率下降50%以上,且在服役过程中体现出良好的抗烧结性能。ESP造粒技术为新型热障涂层材料从材料设计到工程应用提供了一种快速的涂层性能调控方法,现已成功应用于稀土锆酸盐、稀土钽酸盐和稀土掺杂YSZ高熵体系等新型热障涂层的制备之中,随着层级孔结构对材料力学、光学、热学的深入研究及其内部拓扑结构的精确控制,未来将会在航空航天、军事国防、荧光测温等领域获得更为广泛的应用。 |
其他语种文摘
|
Thermal barrier coatings, which are widely used in aero-engines and gas turbines, can reduce the surface temperature and improve the effective service time of superalloy due to low thermal conductivity and good temperature resistance. The performance and lifetime of the thermal barrier coating are directly affected by the material and structure of the ceramic top coating. The method of adjusting the microstructure of ceramic coating with controlled raw material powder can reduce the strain-stress mismatch in the coating, and has the advantages of flexible operation, remarkable effect and wide control range. In order to solve problems of low strain tolerance and insufficient thermal shock resistance in traditional coatings, our team successfully has prepared ceramic microspheres with hierarchy pore structure by using electrostatic spraying combined with phase inversion theory(ESP). Compared with traditional hollow microspheres, the ESP microstructure of nano-pores and finger-like pores lead to high sintering resistance, low thermal conductivity, high specific strength and >95% thermal reflectivity. With the retention of the hierarchy structure, the coating has good fracture toughness and strain tolerance, where the thermal cycle life of the coating is increased by more than ~2 times. ESP technology provides a fast feedback control method for new thermal barrier coating materials from material design to engineering application, such as rare earth zirconate, rare earth tantalate and rare earth doped YSZ high entropy system. With the indepth study of material mechanics, optics, thermodynamics and the precise control of internal topological structure, the hierarchy pore structure will be more widely used in aerospace, military defense, fluorescence temperature measurement and other fields in the future. |
来源
|
航空材料学报
,2023,43(4):1-16 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000028
|
关键词
|
热障涂层
;
静电喷雾
;
相分离
;
层级孔结构
;
热机械性能
|
地址
|
1.
上海交通大学材料科学与工程学院, 上海, 200240
2.
上海市先进高温材料及其精密成形重点实验室, 上海市先进高温材料及其精密成形重点实验室, 上海, 201108
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
上海市浦江人才计划项目
;
国家重大科技专项
;
上海市2020年度科技创新行动计划国际合作项目
|
文献收藏号
|
CSCD:7530385
|
参考文献 共
84
共5页
|
1.
张博. 长寿命热障涂层的剥落机理及抗剥落结构设计.
航空材料学报,2022,42(1):1-14
|
CSCD被引
5
次
|
|
|
|
2.
Clarke D R. Thermal-barrier coatings for more efficient gas-turbine engines.
MRS bulletin,2012,37(10):891-898
|
CSCD被引
125
次
|
|
|
|
3.
Lashmi P G. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems.
Journal of the European Ceramic Society,2020,40(8):2731-2745
|
CSCD被引
16
次
|
|
|
|
4.
Padture N P. Thermal barrier coatings for gas-turbine engine applications.
Science,2002,296(5566):280-284
|
CSCD被引
599
次
|
|
|
|
5.
霍晓. 静态氧化过程中热障涂层的剥落机理.
航空材料学报,1999,19(2):20-26
|
CSCD被引
3
次
|
|
|
|
6.
Vaßen R. Overview on advanced thermal barrier coatings.
Surface and Coatings Technology,2010,205(4):938-942
|
CSCD被引
103
次
|
|
|
|
7.
杨姗洁. 热障涂层在CMAS环境下的失效与防护.
航空材料学报,2018,38(2):43-51
|
CSCD被引
19
次
|
|
|
|
8.
Liu S H. Low-pressure plasma-induced physical vapor deposition of advanced thermal barrier coatings:microstructures,modelling and mechanisms.
Materials Today Physics,2021,21:100481
|
CSCD被引
7
次
|
|
|
|
9.
Liu Q. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines.
Journal of Materials Science & Technology,2019,35(12):2814-2823
|
CSCD被引
29
次
|
|
|
|
10.
Wan C. Influence of B site substituent Ti on the structure and thermophysical properties of A_2B_2O_7-type pyrochlore Gd_2Zr_2O_7.
Acta materialia,2009,57(16):4782-4789
|
CSCD被引
35
次
|
|
|
|
11.
Ye F. High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calcium-magnesium-aluminosilicate (CMAS).
Materials Chemistry and Physics,2020,256:123679
|
CSCD被引
4
次
|
|
|
|
12.
Haoran L. Thermo-physical properties of rare-earth hexaaluminates LnMgAl_(11)O_(19) (Ln:La,Pr,Nd,Sm,Eu and Gd) magnetoplumbite for advanced thermal barrier coatings.
Journal of the European Ceramic Society,2015,35(4):1297-1306
|
CSCD被引
13
次
|
|
|
|
13.
赵鹏森. 稀土掺杂热障涂层的研究进展.
航空材料学报,2021,41(4):83-95
|
CSCD被引
11
次
|
|
|
|
14.
Wang K. Air plasma-sprayed high-entropy (Y_(0.2)Yb_(0.2)Lu_(0.2)Eu_(0.2)Er_(0.2))_3Al_5O_(12) coating with high thermal protection performance.
Journal of Advanced Ceramics,2022,11(10):1571-1582
|
CSCD被引
3
次
|
|
|
|
15.
Zhou L. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La_(0.2)Nd_(0.2)Sm_(0.2) Eu_(0.2)Gd_(0.2)) 2Zr_2O_7 prepared by atmospheric plasma spraying.
Journal of the European Ceramic Society,2020,40(15):5731-5739
|
CSCD被引
32
次
|
|
|
|
16.
Fauchais P. From powders to thermally sprayed coatings.
Journal of Thermal Spray Technology,2010,19(1):56-80
|
CSCD被引
11
次
|
|
|
|
17.
Tsipas S A.
Thermophysical properties of plasma sprayed thermal barrier coatings,2005
|
CSCD被引
1
次
|
|
|
|
18.
Dwivedi G. Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging.
Journal of the American Ceramic Society,2014,97(9):2736-2744
|
CSCD被引
6
次
|
|
|
|
19.
Tan Y. Effect of the starting microstructure on the thermal properties of assprayed and thermally exposed plasma-sprayed YSZ coatings.
Journal of the American Ceramic Society,2009,92(3):710-716
|
CSCD被引
10
次
|
|
|
|
20.
Guo H B. Effect of hollow spherical powder size distribution on porosity and segmentation cracks in thermal barrier coatings.
Journal of the American Ceramic Society,2006,89(12):3797-3804
|
CSCD被引
5
次
|
|
|
|
|