天基光学成像系统像移研究及补偿技术发展现状及趋势(特邀)
Current Status and Development Tendency of Image Motion and Compensation About Space Based on Optical Imaging System(Invited)
查看参考文献53篇
文摘
|
天基各类光学系统在成像过程中,受卫星轨道变化、姿态角变化等因素以及跟踪速度误差、平台及各运动部件颤振的影响会造成像移。像移会导致图像分辨率降低,图像模糊,严重影响最终的图像质量,因此如何抑制动态像移的影响已成为获取高分辨率清晰图像的瓶颈。目前已有的研究基本都是从单独的应用领域去分析像移的产生因素,没有系统全面的将天基光学系统像移的产生和补偿技术进行综合呈现。本文在简述像移影响机理及像移补偿技术的基础上,对天基成像按照用途分类,详细介绍近年来国内外在对地遥感、空间天文探测、火星探测和空间目标探测成像领域像移影响及补偿的研究进展。通过对国内外研究现状的跟踪分析,预测天基光学成像系统像移研究的发展方向,进一步提升对我国空间光学技术发展方向的理解,为我国航天光学技术和装备的发展提供指导。 |
其他语种文摘
|
Along with the development and progress of science and technology, the image quality will be affected by variation of orbit, attitude angle and other factors, as well as tracking speed errors, platform and moving parts jitter. All of these factors will cause image motion, which will lead to image resolution reduction, image blurring and image quality declined. Therefore, how to suppress the impact of dynamic image motion becomes the bottleneck of obtaining high-resolution images. At present, the existed researches basically analyze the factors of image motion from a separate application field. They do not present the generation and compensation technology of image motion of space-based optical system systematically and comprehensively. How to suppress the influence of dynamic image shift gradually has become the bottleneck of obtaining high-resolution and clear images. Compared to the conventional groundbased telescope, the space one can get away from the distortions of the Earth's atmosphere. So less background noise, wider optical wavebands and higher imaging precision to the diffraction limit can be achieved. This paper analyzes the various factors that produce image shifts during the imaging process of the space-based space target optical system and on this basis, comprehensively analyzes and locates the factors that affect the quality of dynamic imaging. Aiming at the problem of unclear imaging caused by dynamic image movement in the process of space high-speed moving target tracking, the degradation mechanism is analyzed, and the satellite platform disturbance, moving base tracking stability, stray light, defocusing, and imaging distance within the integration time are analyzed in detail. The influence of factors such as changes on the dynamic MTF is given, and the mathematical model corresponding to each influencing factor is given. An image motion compensation scheme based on FSM is given, which has been verified by laboratory tests and can effectively reduce the impact of image motion. During the space camera's on-orbit working process, vibration caused by reaction wheel assembles; solar panels and lower frequency can be compensated and suppressed by attitude controllers. While vibration with a smaller amplitude and higher frequency will still convey through the platform to the sensor, resulting in subtle jitter and weakened attitude stability of the sensor. Due to the tiny unit pixel view angle of high resolution sensor, jitter will lead to the image point of the ground scene indistinct and imaging quality declined in exposure time. With the development of spacecraft attitude control method, sensing, optical system design and manufacturing level, how to suppress the influence of dynamic image shift gradually It has become the bottleneck of obtaining high-resolution and clear images. In order to realize high resolution imaging, the space-based space target optical imaging system has higher and higher requirements for the spatial resolution of the payload, and a wider and wider range of motion adaptation of the space moving target. This paper sketches the mechanism of image motion influence and image motion compensation technologies. On the basis of that, this paper classifies space-based imaging according to the applications, such as remote sensing, space astronomical observation, Mars exploration and space target detection. Furthermore, we introduce in detail the research progress of image motion influence and compensation in the fields of remote sensing, space astronomical observation, Mars exploration and space target detection. This paper provides the research progress of image motion influence and compensation in the fields of domestic and international in recent years. |
来源
|
光子学报
,2023,52(6):0611001 【核心库】
|
DOI
|
10.3788/gzxb20235206.0611001
|
关键词
|
像移
;
图像质量
;
动态调制传递函数
;
像移补偿
;
速度平稳性
|
地址
|
1.
中国科学院西安光学精密机械研究所, 西安, 710119
2.
中国科学院空间精密测量技术重点实验室, 中国科学院空间精密测量技术重点实验室, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
航空、航天技术的研究与探索 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7505925
|
参考文献 共
53
共3页
|
1.
徐伟. 吉林一号轻型高分辨率遥感卫星光学成像技术.
光学精密工程,2017,25(8):1969-1978
|
CSCD被引
17
次
|
|
|
|
2.
徐之海. 面阵空间相机稳像补偿研究.
红外与激光工程,2007,36(5):593-596
|
CSCD被引
7
次
|
|
|
|
3.
朱仁璋. 全球高分光学星概述(一):美国和加拿大.
航天器工程,2015,24(6):85-106
|
CSCD被引
12
次
|
|
|
|
4.
朱仁璋. 全球高分光学星概述(二):欧洲.
航天器工程,2016,25(1):95-118
|
CSCD被引
9
次
|
|
|
|
5.
Tony L. Measuring segmented primary mirror WFE in the presence of vibration and thermal drift on the light-weighted JWST.
Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442,2021:84423J
|
CSCD被引
1
次
|
|
|
|
6.
Philip H. ATLAST-8 Mission concept study for 8-meter monolithic UV/optical space telescope.
Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave,2010
|
CSCD被引
1
次
|
|
|
|
7.
William R. ATLAST-9.2 m: a large-aperture deployable space telescope.
Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave,2010
|
CSCD被引
1
次
|
|
|
|
8.
闫得杰. 基于火星大椭圆轨道像移补偿计算方法.
光学精密工程,2022,30(2):153-159
|
CSCD被引
1
次
|
|
|
|
9.
胡庆龙.
摆扫式天基红外成像系统光机结构设计及其像移补偿技术研究,2018
|
CSCD被引
4
次
|
|
|
|
10.
Shimizu T. Image stabilization system for hinode (Solar-B) solar optical telescope.
Solar Physics,2008,249(2):221-232
|
CSCD被引
10
次
|
|
|
|
11.
Olson G. Image motion compensation with frame transfer ccd's.
SPIE. 4567,2002:153-160
|
CSCD被引
2
次
|
|
|
|
12.
Delvit J M. Modulation transfer function estimation from non specific images.
Proceedings of Optical Engineering,2004,43(6):1355-1365
|
CSCD被引
5
次
|
|
|
|
13.
Delvit J M. Modulation transfer function measurement using non specific views.
SPIE. 4855,2003:34-45
|
CSCD被引
1
次
|
|
|
|
14.
李伟雄.
高分辨率空间相机敏捷成像的像移补偿方法研究,2012
|
CSCD被引
6
次
|
|
|
|
15.
李永昌. 宽视场遥感相机像移速度模型及补偿策略.
武汉大学学报(信息科学版),2018,43(8):1278-1286
|
CSCD被引
9
次
|
|
|
|
16.
张泉.
空间大口径快反镜机构非线性补偿及闭环控制技术研究,2019
|
CSCD被引
1
次
|
|
|
|
17.
张敏. 基于TDICCD空间相机图像模拟源系统设计.
液晶与显示,2016,31(2):208-214
|
CSCD被引
6
次
|
|
|
|
18.
孙继明. 大视场时间延迟积分CCD遥感相机的精密定焦.
光学精密工程,2014,22(3):602-607
|
CSCD被引
9
次
|
|
|
|
19.
宁慧. 星上时间延迟积分CCD拼接相机图像的实时处理.
光学精密工程,2014,22(2):508-516
|
CSCD被引
1
次
|
|
|
|
20.
郭汉洲. 遥感相机动态调制传递函数与时间延迟积分CCD行周期误差的关系.
光学精密工程,2013,21(8):2195-2200
|
CSCD被引
15
次
|
|
|
|
|