F/0.78高次非球面零位补偿检测与投影畸变校正
F/0.78 High Order Aspheric Surface Testing with Null Compensator and Mapping Distortion Correction
查看参考文献24篇
文摘
|
为实现高次非球面的高精度检测与确定性加工,从高次非球面检测的零位补偿器设计和干涉检测图的投影畸变校正两方面出发提出了具体的解决方案。首先,基于三级像差理论与PW法推导了高次非球面三片式补偿器初始结构参数计算公式。针对有效口径314 mm、F/0.78的8阶偶次非球面,将基于公式获得的初始结构参数代入光学设计软件进行缩放、优化后获得PV=0.009 6λ、RMS=0.001 2λ (λ=632.8 nm)的补偿器设计结果,公差分析结果表明此设计满足高次非球面λ/50的检测精度要求。进一步地,针对基于零位补偿器的干涉检测图存在畸变的问题提出了一种校正方法,该方法采用零位补偿器的成像畸曲线数据确定干涉图的畸变规律,利用畸变零点求解算法确定畸变中心,结合畸变规律与畸变中心点坐标进行逆向求解实现干涉检测图畸变的快速校正。采用本文所提方法对零位补偿检测结果进行畸变校正,基于畸变校正结果对非球面进行了6次磁流变抛光后,面形RMS由0.270λ收敛至0.019λ,验证了该畸变校正方法的有效性。 |
其他语种文摘
|
Compared with traditional spherical surfaces, aspheric surfaces own more degrees of freedom, which is beneficial to the light weight, integration and aberration correction of an optical system. In recent years, with the development and progress of high-precision optical manufacturing technology, aspheric surfaces have been widely used in the optical systems design in aerospace, space telephoto and other fields. Meanwhile, the testing of aspheric surfaces, especially high-order aspheric surfaces, is more difficult and is a prerequisite for guiding optical deterministic manufacturing. That is to say, it is not only necessary to realize the testing of aspheric surfaces, but also to be able to give correct guidance for manufacturing based on the testing results. At present, aspheric surfaces testing can be achieved with null lens compensator, but for high-order aspheric surfaces with a small F-number, traditional two-piece lens compensator cannot meet the testing accuracy requirements, and the structure of null lens needs to be further optimized. What's more, the shape of interfermetric image obtained with null lens compensator is inconsistent with that of the mirror under test, that is, mapping distortion. It is worth noting that deterministic manufacturing techniques such as Computer-Controlled Optical Surfacing (CCOS), Magnetorheological Finishing (MRF), and Ion Beam Figuring (IBF) all require accurate guidance and feedback from interfermetric image, position errors caused by mapping distortion will seriously affect manufacturing efficiency, and even lead to a failure. Therefore, the mapping distortion correction is crucial for the interferometric image to correctly guide deterministic manufacturing. In this paper, not only the design method of high-order aspheric null lens compensator is discussed, but also the mapping distortion correction of interferometric image. Firstly, based on third-order aberration theory and PW method, the initial structure calculation formula of the high-order aspheric three-piece lens compensator is deduced, and the above formula is programmed, which facilitates the null lens compensator design. For an 8th-order even-order aspheric surface with an effective diameter of 314 mm and F/0.78, the initial structural parameters of null lens compensator were obtained by using the calculation formula. Then, it is substituted into the optical design software for scaling and optimization, and finally the design result with PV=0.0096λ, RMS=0.0012λ (λ=632.8 nm) can be obtained, which can meet the high-precision testing requirements. Furthermore, a correction method is proposed to solve the problem of mapping distortion in the interferometric image obtained with null lens compensator. This method combines imaging distortion of null lens and an algorithm for solving null distortion point coordinates, which can conveniently realize the rapid mapping distortion correction. On the one hand, null lens imaging system with high-order aspheric surfaces as object can be obtained by reversing the testing light path, and the imaging distortion is consistent with the mapping distortion, which can be used for mapping distortion correction. On the other hand, since the null distortion point is also the geometric center of the interfermetric image, the least squares method is used to fit the circle boundary in combination with the boundary data of interfermetric image, and then the null distortion point can be obtained. Then, The correction method is used to correct the mapping distortion of the interferometeric image obtained by null lens compensator. After 6 times of magnetorheological finishing based correction results, the surface RMS reduced from 0.270λ to 0.019λ, which verifies the validity and efficiency of this correction method. |
来源
|
光子学报
,2023,52(2):0212004 【核心库】
|
DOI
|
10.3788/gzxb20235202.0212004
|
关键词
|
高次非球面
;
零位检测
;
补偿器设计
;
投影畸变校正
;
确定性抛光
|
地址
|
1.
中国科学院西安光学精密机械研究所, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
西安电子科技大学机电工程学院, 西安, 710071
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
中科院西部之光人才项目
;
陕西省重点研发计划
|
文献收藏号
|
CSCD:7426430
|
参考文献 共
24
共2页
|
1.
郝群. 基于干涉法的非球面测量技术.
计测技术,2018,38(1):1-8
|
CSCD被引
9
次
|
|
|
|
2.
师途. 非球面光学元件的面形检测技术.
中国光学,2014,7(1):26-46
|
CSCD被引
43
次
|
|
|
|
3.
梁子健. 非球面光学元件面型检测技术研究进展与最新应用.
中国光学,2022,15(2):161-186
|
CSCD被引
15
次
|
|
|
|
4.
张磊.
光学自由曲面子孔径拼接干涉检测技术,2016
|
CSCD被引
3
次
|
|
|
|
5.
Malacara D.
Optical shop testing,2007
|
CSCD被引
42
次
|
|
|
|
6.
李锐钢. 大口径高次、离轴非球面干涉测量中投影畸变的标定方法.
光学精密工程,2006,14(4):533-538
|
CSCD被引
17
次
|
|
|
|
7.
Wang Tianyi. Study on an effective one-dimensional ion-beam figuring method.
Optics Express,2019,27:15368-15381
|
CSCD被引
1
次
|
|
|
|
8.
Sidpara M A. Magnetorheological finishing: a perfect solution to nanofinishing requirements.
Optical Engineering,2014,53(9):092002
|
CSCD被引
4
次
|
|
|
|
9.
陈哲. 大口径离轴非球面补偿检测的畸变校正.
中国激光,2015,42(10):205-211
|
CSCD被引
1
次
|
|
|
|
10.
Novak M. Distortion mapping correction in aspheric null testing.
SPIE. 7063,2008:706313
|
CSCD被引
4
次
|
|
|
|
11.
Kewei E. Distortion mapping correction in AIMS primary mirror testing by computergenerated hologram.
Research in Astronomy and Astrophysics,2021,21(7):1-11
|
CSCD被引
1
次
|
|
|
|
12.
Zhao Chunyu. Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials.
Optics Express,2007,15(26):18014-18024
|
CSCD被引
16
次
|
|
|
|
13.
Zhao Chunyu. Orthonormal vector polynomials in a unit circle, Part II: completing the basis set.
Optics Express,2008,16(9):6586-6591
|
CSCD被引
10
次
|
|
|
|
14.
厉宏兰. 离轴非球面零位补偿检验的非线性畸变校正.
应用光学,2019,40(4):638-644
|
CSCD被引
2
次
|
|
|
|
15.
Zeng Xuefeng. Mapping distortion correction in freeform mirror testing by computer-generated hologram.
Applied Optics,2018,57(34):F56-F61
|
CSCD被引
4
次
|
|
|
|
16.
曾雪锋. 计算全息图补偿检测离轴非球面中的投影畸变校正技术.
中国激光,2013,40(11):237-241
|
CSCD被引
3
次
|
|
|
|
17.
张珑. 折反射式零位补偿检验.
光子学报,2016,45(7):0722002
|
CSCD被引
2
次
|
|
|
|
18.
张珑. 折反射式零位补偿检验(续).
光子学报,2016,45(12):1222001
|
CSCD被引
3
次
|
|
|
|
19.
潘君骅.
光学非球面的设计、加工与检测,2004
|
CSCD被引
16
次
|
|
|
|
20.
郝沛明.
非球面检验的辅助光学系统设计,2017
|
CSCD被引
2
次
|
|
|
|
|