帮助 关于我们

返回检索结果

Lithology Classification Based on Set-Valued Identification Method

查看参考文献35篇

Li Jing 1   Wu Lifang 2,3   Lu Wenjun 1 *   Wang Ting 4   Kang Yu 1   Feng Deyong 5   Zhou Hansheng 6  
文摘 Lithology classification using well logs plays a key role in reservoir exploration. This paper studies the problem of lithology identification based on the set-valued method(SV), which uses the SV model to establish the relation between logging data and lithologic types at a certain depth point.In particular, the system model is built on the assumption that the noise between logging data and lithologic types is normally distributed, and then the system parameters are estimated by SV method based on the existing identification criteria. The logging data of Shengli Oilfield in Jiyang Depression are used to verify the effectiveness of SV method. The results indicate that the SV model classifies lithology more accurately than the Logistic Regression model(LR)and more stably than uninterpretable models on imbalanced dataset. Specifically, the Macro-F1 of the SV models(i.e., SV(3), SV(5), and SV(7))are higher than 85%, where the sandstone samples account for only 22%. In addition, the SV(7)lithology identification system achieves the best stability, which is of great practical significance to reservoir exploration.
来源 Journal of Systems Science and Complexity ,2022,35(5):1637-1652 【核心库】
DOI 10.1007/s11424-022-1059-y
关键词 DT ; lithology classification ; LR ; RF ; set-valued model ; SVM
地址

1. Department of Automation, University of Science and Technology of China, Hefei, 230027  

2. Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Key Laboratory of Systems and Control, Chinese Academy of Sciences, Beijing, 100190  

3. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100190  

4. Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, 100083  

5. Shengli Geophysical Research Institute, SINOPEC Group, Dongying, 257022  

6. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 地质学;自动化技术、计算机技术
基金 supported in part by the National Key Research and Development Project of China ;  the SINOPEC Programmes for Science and Technology Development ;  国家自然科学基金 ;  the Major Science and Technology Project of Anhui Province ;  the University Synergy Innovation Program of Anhui Province ;  the Fundamental Research Funds for the Central Universities
文献收藏号 CSCD:7394048

参考文献 共 35 共2页

1.  Delfiner P. Automatic determination of lithology from well logs. SPE Formation Evaluation,1987,2(3):303-310 CSCD被引 6    
2.  Honarkhah M. Direct pattern-based simulation of non-stationary geostatistical models. Mathematical Geosciences,2012,44(6):651-672 CSCD被引 8    
3.  Zych M. Application of artificial neural networks in identification of geological formations on the basis of well logging data-A comparison of computational environments' efficiency. International Workshop on Modeling Social Media,2018 CSCD被引 1    
4.  Chang J. Unsupervised domain adaptation using maximum mean discrepancy optimization for lithology identification. Geophysics,2020,86(2):1-84 CSCD被引 1    
5.  Li Z. Interpretable semisupervised classification method under multiple smoothness assumptions with application to lithology identification. IEEE Geoscience and Remote Sensing Letters,2021,18(3):386-390 CSCD被引 1    
6.  Chang J. Cross-domain lithology identification using active learning and source reweighting. IEEE Geoscience and Remote Sensing Letters,2020 CSCD被引 1    
7.  Zhang G. Deep learning for seismic lithology prediction. Geophysical Journal International,2018,215(2):1368-1387 CSCD被引 7    
8.  Zhu L. Forming a new small sample deep learning model to predict total organic carbon content by combining unsupervised learning with semisupervised learning. Applied Soft Computing,2019,83(105):596-619 CSCD被引 5    
9.  Ahmadi M A. Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs. Petroleum,2019,5(3):271-284 CSCD被引 13    
10.  Zhu L. A new and reliable dual model-and data-driven toc prediction concept: A toc logging evaluation method using multiple overlapping methods integrated with semi-supervised deep learning. Journal of Petroleum Science and Engineering,2020,188(106):944-960 CSCD被引 1    
11.  Sebtosheikh M A. Support vector machine method, a new technique for lithology prediction in an iranian heterogeneous carbonate reservoir using petrophysical well logs. Carbonates and Evaporites,2015,30(1):59-68 CSCD被引 5    
12.  Deng C. Support vector machine as an alternative method for lithology classification of crystalline rocks. Journal of Geophysics and Engineering,2017,14(2):341-349 CSCD被引 6    
13.  Li Z. Semi-supervised learning for lithology identification using laplacian support vector machine. Journal of Petroleum Science and Engineering,2020,195(107):510-523 CSCD被引 1    
14.  Ma Y Z. Integration of seismic and well-log data using statistical and neural network methods. The Leading Edge,2017,36(4):324-329 CSCD被引 2    
15.  Liu H. Well logging based lithology identification model establishment under data drift: A transfer learning method. Sensors,2020,20(13):3643-3660 CSCD被引 2    
16.  Bestagini P. A machine learning approach to facies classification using well logs. SEG Technical Program Expanded Abstracts,2017:2137-2142 CSCD被引 1    
17.  Dev V A. Evaluating the boosting approach to machine learning for formation lithology classification. Computer Aided Chemical Engineering,2018,44:1465-1470 CSCD被引 4    
18.  Ao Y. Logging lithology discrimination in the prototype similarity space with random forest. IEEE Geoscience and Remote Sensing Letters,2018,16(5):687-691 CSCD被引 2    
19.  Sun J. Optimization of models for a rapid identification of lithology while drilling: A win-win strategy based on machine learning. Journal of Petroleum Science and Engineering,2019,176:321-341 CSCD被引 6    
20.  Zhu L. Intelligent logging lithological interpretation with convolution neural networks. Petrophysics,2018,59(6):799-810 CSCD被引 1    
引证文献 1

1 Wang Ying Threshold Selection and Resource Allocation for Quantized Identification Journal of Systems Science and Complexity,2024,37(1):204-229
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号