挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能
Microstructure and mechanical properties of AZ91-(SiCP/AZ91)clad plate fabricated by extrusion
查看参考文献19篇
文摘
|
在300,350,400℃下成功通过挤压复合法制备多层AZ91-(SiCP/AZ91)复合板,探究AZ91-(SiCP/AZ91)复合板中SiCP/AZ91复合材料层和AZ91层的显微组织演变、界面的演化机制和力学性能变化规律。结果表明:热挤压复合中,AZ91-(SiCP/AZ91)多层复合板中合金层发生完全动态再结晶,晶粒细化,合金组织随挤压温度的升高更均匀,而且外层合金层比内层合金层晶粒尺寸略大;SiCP/AZ91复合材料层同样发生完全动态再结晶,晶粒尺寸小于合金层,随着挤压温度的升高,SiCP的分布更加均匀;不同挤压温度下AZ91-(SiCP/AZ91)复合板合金层与复合材料层界面均未出现明显的分层以及开裂现象;AZ91-(SiCP/AZ91)复合板的室温力学强度位于AZ91合金与SiCP/AZ91复合材料之间, SiCP/AZ91层中SiCP与基体界面脱粘是导致复合板材失效的主要原因。 |
其他语种文摘
|
Multilayered AZ91-(SiCP/AZ91)clad plates were fabricated at 300,350 ℃ and 400 ℃ successfully by extrusion.The microstructure evolution,bonding interface and the mechanical properties of the AZ91-(SiCP/AZ91)clad plates were investigated in detail.The results show that grain of both of the AZ91layer and SiCP/AZ91layer are refined due to the dynamic recrystallization (DRX)during the extrusion processes and the SiCP/AZ91layer processes much finer grain size.The SiCPdistribution of SiCP/AZ91layer is improved with increasing of extrusion temperature.No obvious delamination is observed in the AZ91-(SiCP/AZ91)clad plates fabricated at different temperatures.The metallurgical bonding of the interface between AZ91and SiCP/AZ91basically occurs in the extrusion die.The room-temperature strength of the AZ91-(SiCP/AZ91)composite lies between the AZ91alloy and the SiCP/AZ91,corresponding well with the rule of mixture(ROM). The inadhesion of the SiCPin the SiCP/AZ91layer is the main reason for the failure of the AZ91-(SiCP/AZ91)clad plates during tensile test. |
来源
|
材料工程
,2023,51(1):16-25 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000162
|
关键词
|
AZ91-(SiCP/AZ91)复合板材
;
挤压
;
显微组织
;
力学性能
|
地址
|
1.
北京科技大学国家材料服役安全科学中心, 北京, 102206
2.
太原理工大学材料科学与工程学院, 先进镁基材料山西省重点实验室, 太原, 030024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:7390469
|
参考文献 共
19
共1页
|
1.
潘复生. 镁合金塑性加工技术发展及应用.
金属学报,2021,57:1362-1379
|
CSCD被引
19
次
|
|
|
|
2.
王慧远. 低合金化高性能变形镁合金研究现状及展望.
金属学报,2021,57:1429-1437
|
CSCD被引
6
次
|
|
|
|
3.
曾小勤. 高性能稀土镁合金研究新进展.
中国有色金属学报,2021,31:2963-2975
|
CSCD被引
22
次
|
|
|
|
4.
Deng K K. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review.
Acta Metall Sin(Engl Lett),2019,32:413-425
|
CSCD被引
13
次
|
|
|
|
5.
马立敏. 复合材料在新一代大型民用飞机中的应用.
复合材料学报,2015,32(2):317-322
|
CSCD被引
108
次
|
|
|
|
6.
Shi Q X. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone.
Journal of Materials Science & Technology,2021,60:8-20
|
CSCD被引
4
次
|
|
|
|
7.
Ohsaki S. Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative rollbonding process.
Acta Materialia,2007,55(8):2885-2895
|
CSCD被引
25
次
|
|
|
|
8.
Wang H W. Microstructure and mechanical properties of Al/Mg/Al composite sheets containing trapezoidal shaped intermediate layer.
Materials Science and Engineering:A,2021,811:140989
|
CSCD被引
4
次
|
|
|
|
9.
Jamaati R. Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods.
Journal of Materials Engineering and Performance,2012,21(7):1249-1253
|
CSCD被引
4
次
|
|
|
|
10.
Wu Y. Microstructure and mechanical behavior of a Mg AZ31/Al7050laminate composite fabricated by extrusion.
Materials Science and Engineering:A,2015,640:454-459
|
CSCD被引
18
次
|
|
|
|
11.
Chen L. Fabrication of Al/Mg/Al laminate by aporthole die co-extrusion process.
Journal of Materials Processing Technology,2018,258:165-173
|
CSCD被引
12
次
|
|
|
|
12.
Mahmoodkhani Y. Co-extrusion process to produce Al-Mg eutectic clad magnesium products at elevated temperatures.
Journal of Materials Processing Technology,2016,232:175-183
|
CSCD被引
6
次
|
|
|
|
13.
Zha M. Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg-Al-Zn alloys.
Journal of Alloys and Compounds,2017,728:682-693
|
CSCD被引
18
次
|
|
|
|
14.
Wang C J. Competition behavior of the strengthening effects in as-extruded AZ91matrix:influence of pre-existed Mg17Al12phase.
Materials Science and Engineering: A,2016,656:102-110
|
CSCD被引
11
次
|
|
|
|
15.
Lee J U. Effects of homogenization time on aging behavior and mechanical properties of AZ91alloy.
Materials Science and Engineering:A,2018,714:49-58
|
CSCD被引
12
次
|
|
|
|
16.
Sun X F. High strength SiCp/AZ91composite assisted by dynamic precipitated Mg17Al12phase.
Journal of Alloys and Compounds,2018,732:328-335
|
CSCD被引
10
次
|
|
|
|
17.
Fan Y D. Work hardening and softening behavior of Mg-Zn-Ca alloy influenced by deformable Ti particles.
Materials Science and Engineering:A,2022,833:142336
|
CSCD被引
3
次
|
|
|
|
18.
Hassan S F. Increasing elastic modulus, strength and CTE of AZ91by reinforcing pure magnesium with elemental copper.
Materials Letters,2004,58(16):2143-2146
|
CSCD被引
5
次
|
|
|
|
19.
Wang X J. Hot extrusion of SiC_p/AZ91 Mg matrix composites.
Transactions of Nonferrous Metals Society of China,2012,22(8):1912-1917
|
CSCD被引
11
次
|
|
|
|
|