二维Ce-MOFs纳米片的合成及可见光介导脱羧氧化性能
Synthesis of 2DCe-MOFs nanosheets and visiblelight-mediated decarboxylation performance
查看参考文献26篇
文摘
|
以硝酸铈铵为金属盐,以1,3,5-三(4-羧基苯基)苯(H3BTB)为有机配体,利用醋酸作为调节剂,成功构筑二维Ce-MOFs纳米片。醋酸对Ce-MOFs的形貌和结晶度具有显著的调节作用。无醋酸调节的Ce-MOFs(称为Ce-BTB-H0)由较小的纳米片通过高度交联团聚成微米球,结晶度和比表面积均较低;醋酸调节的Ce-MOFs(称为Ce-BTB-H60)为分散的纳米片,纳米片二维尺寸较大,具有更高的结晶度和更大的比表面积。以蓝光LED为光源,氧气为氧化剂,室温条件下,二维Ce-MOFs纳米片催化剂可将不同取代基的苯乙酸脱羧氧化成相应的苯甲醛和苯甲醇。Ce-BTB-H60由于具有更高的结晶度、更大的比表面积以及更分散的纳米片结构,因此具有更优异的光催化性能。 |
其他语种文摘
|
Two-dimensional Ce-MOFs nanosheets were successfully constructed by using ceric ammonium nitrate as metal salt and 1,3,5-tris(4-carboxyphenyl)benzene(H3BTB)as organic ligand, together with the use of acetic acid as modulator.Acetic acid modulator shows significant effects on the morphology and crystallinity of Ce-MOFs.Ce-MOFs microspheres synthesized without acetic acid as modulator(named Ce-BTB-H0)are composed of highly cross-linked small nanosheets with low crystallinity and surface areas.On the contrary,Ce-MOFs synthesized with acetic acid(named Ce-BTB-H60)consist of dispersed nanosheets,and show improved crystallinity and higher surface areas than that of Ce-BTB-H0.Using blue LED as light source and oxygen as oxidant,two-dimensional Ce-MOFs nanosheets enable decarboxylation oxygenation of a variety of substituted phenylacetic acid to their corresponding benzaldehydes and benzyl alcoholsunder irradiation of blue LED in oxygen atmosphere at room temperature.Moreover,Ce-BTB-H60nanosheets show better photocatalytic performance due to their higher crystallinity,larger specific surface area and improved dispersity than that of Ce-BTB-H0. |
来源
|
材料工程
,2022,50(9):89-96 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000161
|
关键词
|
Ce-MOFs
;
二维纳米片
;
可见光催化
;
脱羧氧化
;
异相催化
|
地址
|
贵州师范大学化学与材料科学学院, 贵州省功能材料化学重点实验室, 贵阳, 550001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
国家自然科学基金项目
;
贵州省项目
|
文献收藏号
|
CSCD:7332143
|
参考文献 共
26
共2页
|
1.
Xuan J. Visible-light-induced decarboxylative functionalization of carboxylic acids and their derivatives.
Angewandte Chemie International Edition,2015,54(52):15632-15641
|
CSCD被引
47
次
|
|
|
|
2.
Rodriguez N. Decarboxylative coupling reactions: a modern strategy for C-C bond formation.
Chemical Society Reviews,2011,40(10):5030-5048
|
CSCD被引
39
次
|
|
|
|
3.
Patra T. Copper mediated decarboxylative direct C-H arylation of heteroarenes with benzoic acids.
Chemical Communications,2016,52(7):1432-1435
|
CSCD被引
1
次
|
|
|
|
4.
Feng Q. Aldehydes and ketones formation:coppercatalyzed aerobic oxidative decarboxylation of phenylacetic acids andα-hydroxyphenylaceticacids.
The Journal of Organic Chemistry,2014,79(4):1867-1871
|
CSCD被引
5
次
|
|
|
|
5.
Mudarra A L. Beyond the traditional roles of Ag in catalysis:the transmetalating ability of organosilver(Ⅰ)species in Pd-catalysedreactions.
Organic &Biomolecular Chemistry,2019,17(7):1655-1667
|
CSCD被引
4
次
|
|
|
|
6.
Felpin F X. Biaryl synthesis with arenediazonium salts:cross-coupling,CH-arylation and annulation reactions.
Chemical Society Reviews,2019,48(4):1150-1193
|
CSCD被引
6
次
|
|
|
|
7.
Candish L. Mild,visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals.
Chemical Science,2017,8(5):3618-3622
|
CSCD被引
3
次
|
|
|
|
8.
Yu X Y. Visible light-driven radical-mediated C-C bond cleavage/functionalization in organic synthesis.
Chemical Reviews,2020,121(1):506-561
|
CSCD被引
90
次
|
|
|
|
9.
Bazyar Z. On/off O_2 switchable photocatalytic oxidative and protodecarboxylation of carboxylic acids.
The Journal of Organic Chemistry,2019,84(21):13503-13515
|
CSCD被引
3
次
|
|
|
|
10.
晏秘. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化.
材料工程,2021,49(7):64-70
|
CSCD被引
1
次
|
|
|
|
11.
Tian W F. Visible-light photoredoxcatalyzed decarboxylative alkylation of heteroarenes using carboxylic acids with hydrogen release.
Organic Letters,2019,21(17):6930-6935
|
CSCD被引
6
次
|
|
|
|
12.
Shirase S. Cerium (Ⅳ)carboxylate photocatalyst for catalytic radical formation from carboxylic acids:decarboxylative oxygenation of aliphatic carboxylic acids and lactonization of aromatic carboxylic acids.
Journal of the American Chemical Society,2020,142(12):5668-5675
|
CSCD被引
6
次
|
|
|
|
13.
王晨. TEMPO功能化共轭微孔聚合物催化氧化醇性能.
精细化工,2019,36(12):2447-2451
|
CSCD被引
2
次
|
|
|
|
14.
庄金亮. 室温快速合成HKUST-1应用于醇选择性催化氧化.
应用化工,2019,48(7):1543-1547
|
CSCD被引
3
次
|
|
|
|
15.
庄金亮. TEMPO功能化锆基MOFs的合成及醇催化氧化性能.
材料工程,2020,48(10):169-175
|
CSCD被引
3
次
|
|
|
|
16.
Wang Q. State of the art and prospects in metalorganic framework(MOF)-based and MOF-derived nanocatalysis.
Chemical Reviews,2019,120(2):1438-1511
|
CSCD被引
132
次
|
|
|
|
17.
Zhu L. Metal-organic frameworks for heterogeneous basic catalysis.
Chemical Reviews,2017,117(12):8129-8176
|
CSCD被引
53
次
|
|
|
|
18.
Zhao M. Two-dimensional metal-organic framework nanosheets:synthesis and applications.
Chemical Society Reviews,2018,47(16):6267-6295
|
CSCD被引
88
次
|
|
|
|
19.
Wang M. Two-dimensional conjugated metal-organic frameworks(2Dc-MOFs):chemistry and function for MOFtronics.
Chemical Society Reviews,2021,50(4):2764-2793
|
CSCD被引
17
次
|
|
|
|
20.
Zhao K. Two-dimensional metal-organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis.
Nanoscale Advances,2020,2(2):536-562
|
CSCD被引
2
次
|
|
|
|
|