石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价
Preparation of graphene-carboxymethyl cellulose composite aerogel and evaluation of oil absorption performance
查看参考文献35篇
文摘
|
以氧化石墨(GO)为主要原料,并引入高分子羧甲基纤维素(CMC),采用水热还原结合冰模板的方法,经常压干燥和疏水改性,制备石墨烯-羧甲基纤维素复合气凝胶(HGA/CMC)。通过SEM、FT-IR、XPS、电子万能试验机等手段对该气凝胶进行表征,证明了GO与CMC的有效复合和疏水改性的成功。将HGA/CMC用于油品吸附,结果表明:HGA/CMC可利用其丰富的孔道结构吸附纯油品,对油品的吸附量在70.28~172.78g·g~(-1),且油品密度越大,单位质量气凝胶可吸附的油品质量越大。此外HGA/CMC能选择性地吸附水上浮油、水底重油并高效分离水中乳化油,且通过机械挤压可实现HGA/CMC的循环再生利用,10次挤压再生后其吸附量仅损失15%,是具有应用潜力的含油污水治理材料。 |
其他语种文摘
|
With graphite oxide(GO)as the main raw material,combining with carboxymethyl cellulose (CMC),hydrothermal reduction combined ice template method was used to prepare graphene/carboxymethyl cellulose composite aerogel(HGA/CMC),through drying under the environmental pressure and hydrophobic modification.The HGA/CMC was characterized through SEM,FT-IR, XPS and microcomputer controlled electronic universal testing machine,which proves the successful combination between GO and CMC and the effective hydrophobic modification.HGA/CMC can absorb pure oil because of its abundant pore structure,the adsorption capacity of oil is 70.28-172.78g·g~(-1),and the higher the oil density is,the greater the oil mass can be adsorbed by aerogel per unit mass. Furthermore,HGA/CMC shows good selective adsorption capacity for floating oil on water,heavy oil on water bottom and emulsified oil in water.HGA/CMC can be recycled by mechanical extrusion,and its adsorption capacity loss is only 15% after 10times of extrusion regeneration.It is an oily wastewater treatment material with application potential. |
来源
|
材料工程
,2022,50(9):43-51 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000479
|
关键词
|
石墨烯
;
气凝胶
;
常压干燥
;
含油污水
;
吸附
|
地址
|
1.
中国石油大学(华东), 重质油国家重点实验室, 山东, 青岛, 266580
2.
中石化胜利油田供水分公司, 山东, 东营, 257000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
国家自然科学基金面上项目
;
山东省自然科学基金面上项目
|
文献收藏号
|
CSCD:7332138
|
参考文献 共
35
共2页
|
1.
Ma W J. Durable,self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification.
Journal of Membrane Science,2021,634(15):119402
|
CSCD被引
9
次
|
|
|
|
2.
Erdem B. Multifunctional magnetic mesoporous nanocomposites towards multiple applications in dye and oil adsorption.
Journal of Sol-Gel Science and Technology,2021,98:528-540
|
CSCD被引
1
次
|
|
|
|
3.
Yang K. Length controllable tubular carbon nanofibers:surface adjustment and oil adsorption performances.
Colloids and Surfaces A,2021,615(20):126272
|
CSCD被引
2
次
|
|
|
|
4.
Kang W. A novel robust adsorbent for efficient oil/water separation:magnetic carbon nanospheres/graphene composite aerogel.
Journal of Hazardous Materials,2020,392:122499
|
CSCD被引
7
次
|
|
|
|
5.
张颖. 超疏水复合海绵材料的制备及在油水分离的应用.
无机材料学报,2020,35(4):79-85
|
CSCD被引
1
次
|
|
|
|
6.
Zhao J. High-conductivity reduced-graphene-oxide/copper aerogel for energy storage.
Nano Energy,2019,60:760-767
|
CSCD被引
5
次
|
|
|
|
7.
Cheng X. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes.
Journal of Materials Science,2019,54:1872-1883
|
CSCD被引
7
次
|
|
|
|
8.
Diao S. Oil adsorption performance of graphene aerogels.
Journal of Materials Science,2020,55:4578-4591
|
CSCD被引
3
次
|
|
|
|
9.
Song X. Mussel-inspired,ultralight, multifunctional 3Dnitrogen-doped graphene aerogel.
Carbon,2014,80:174-182
|
CSCD被引
18
次
|
|
|
|
10.
Luo Z R. Preparation and oil-water separation of 3Dkapok fiber-reduced graphene oxide aerogel.
Journal of Chemical Technology & Biotechnology,2020,95(3):639-648
|
CSCD被引
4
次
|
|
|
|
11.
Song Y. Grass-modified graphene aerogel for effective oil-water separation.
Process Safety and Environmental Protection,2019,129:119-129
|
CSCD被引
3
次
|
|
|
|
12.
Li D D. High-performance three-dimensional aerogel based on hydrothermal pomelo peel and reduced graphene oxide as an efficient adsorbent for water/oil separation.
Langmuir,2021,37:1521-1530
|
CSCD被引
3
次
|
|
|
|
13.
Wan W. Graphene-carbon nanotube aerogel as an ultra-light,compressible and recyclable highly efficient absorbent for oil and dyes.
Environmental Science Nano,2016,3:107
|
CSCD被引
21
次
|
|
|
|
14.
Li R. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels.
Journal of Materials Chemistry A,2014,2(9):3057-3064
|
CSCD被引
13
次
|
|
|
|
15.
李威.
功能化石墨烯气凝胶的制备及其在油水分离中的应用,2017
|
CSCD被引
1
次
|
|
|
|
16.
Huang Z M. Highly elastic and conductive graphene/carboxymethylcellulose aerogels for flexible strain-sensing materials.
Journal of Materials Science,2017,52(20):12540-12552
|
CSCD被引
2
次
|
|
|
|
17.
张恩薇.
纤维素/石墨烯复合材料的制备与性能研究,2015
|
CSCD被引
1
次
|
|
|
|
18.
Xu W L. Preparation of hyperelastic graphene/carboxymethyl cellulose composite aerogels by ambient pressure drying and its adsorption applications.
Journal of Materials Science,2020,55(24):10543-10557
|
CSCD被引
6
次
|
|
|
|
19.
Cote L J. Langmuir-blodgett assembly of graphite oxide single layers.
Journal of the American Chemical Society,2009,131(3):1043-1049
|
CSCD被引
67
次
|
|
|
|
20.
刁帅. 软模板法石墨烯气凝胶的可控制备及其吸油性能.
化工进展,2020,39(7):2742-2750
|
CSCD被引
4
次
|
|
|
|
|