多车协同目标跟踪方法
Methods for Multi-Vehicle Cooperative Object Tracking
查看参考文献21篇
文摘
|
地面无人系统中多车信息融合技术是提升系统环境感知能力的重要途径。针对单车传感器存在视野遮挡及盲区导致的目标跟踪不连续不稳定问题,提出一种集中式多车协同感知的结果级融合系统模型。该系统模型采用激光雷达作为车辆感知传感器,对不同车辆构建的环境栅格地图在主控端采用D-S证据理论进行融合、得到全局静态环境地图,完成多车协同感知环境模型的构建。在此环境模型基础上设计一种多车协同目标检测与跟踪方法,采用极大值抑制的方法解决检测目标融合冲突;设计一种级联动态目标匹配与跟踪管理方法,完成目标预测跟踪并将结果下发给各车。由两辆无人车组成的实车系统测试结果表明:当出现目标遮挡时,所提多车协同目标检测与跟踪架构相对于单车感知在环境表征上能够获得更全面的目标信息,跟踪目标未出现漏检,未发生跳变;跟踪器输出位置状态结果与检测结果误差较小,能够对所跟踪目标的状态进行准确估计,跟踪轨迹保持连续,有效提高了单车环境感知视野。 |
其他语种文摘
|
Multi-vehicle information fusion technology is an important way to improve the perception of the environment of ground unmanned systems. To address the problem of discontinuous and unstable object tracking in single-vehicle sensors caused by vision occlusion and blind spots, a result-level fusion system model for centralized multi-vehicle cooperative perception is proposed. The system model uses lidar as the vehicle perception sensor and stands on the D-S evidence theory to fuse the environment grid maps constructed by different vehicles at the main control terminal to obtain a global static environment map. Based on this environment model, a multi-vehicle cooperative object detection and tracking method is designed. First, a maximum value suppression method is used to resolve the fusion conflict of detected objects. Then, a cascaded dynamic object matching and tracking management method is designed to complete object prediction and tracking and send the results to vehicles. The test results of a real-vehicle system composed of two unmanned vehicles suggest that when the object is occluded, the proposed multi-vehicle cooperative object detection and tracking architecture can obtain more comprehensive environmental information of the object than a single-vehicle perception system. No tracking object is missed, and no jump occurs. The error between the tracker's output position state result and the detection result is small. The state of the tracked object can be accurately estimated, and the tracking trajectory remains continuous, thus effectively improving the field of vision of the singlevehicle environment. |
来源
|
兵工学报
,2022,43(10):2429-2442 【核心库】
|
DOI
|
10.12382/bgxb.2021.0462
|
关键词
|
地面无人系统
;
多车协同感知
;
激光雷达
;
目标检测
;
目标跟踪
|
地址
|
1.
北京理工大学机械与车辆学院, 北京, 100081
2.
北京特种车辆研究所, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
自动化技术、计算机技术 |
基金
|
国家武器装备预研项目
|
文献收藏号
|
CSCD:7331134
|
参考文献 共
21
共2页
|
1.
Mo Y H. A method of vehicle-infrastructure cooperative perception based vehicle state information fusion using improved kalman filter.
Multimedia Tools and Applications,2022,81(4):4603-4620
|
CSCD被引
5
次
|
|
|
|
2.
Chen Q. Cooper: cooperative perception for connected autonomous vehicles based on 3D point clouds.
Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems(ICDCS),2019:514-524
|
CSCD被引
1
次
|
|
|
|
3.
Chen Q. F-cooper:feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds.
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing(SEC'19),2019:88-100
|
CSCD被引
1
次
|
|
|
|
4.
Kanaki S. Cooperative moving-object tracking with multiple mobile sensor nodes-size and posture estimation of moving objects using in-vehicle multilayer laser scanner.
Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT),2016:59-64
|
CSCD被引
1
次
|
|
|
|
5.
Arnold E. Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors.
IEEE Transactions on Intelligent Transportation Systems,2020,99:1-13
|
CSCD被引
1
次
|
|
|
|
6.
Chen X B. Multi-vehicle cooperative target tracking with time-varying localization uncertainty via recursive variational bayesian inference.
Sensors,2020,20(22):6487
|
CSCD被引
3
次
|
|
|
|
7.
Gabb M. Infrastructure-supported perception and track-level fusion using edge computing.
Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV),2019:1739-1745
|
CSCD被引
1
次
|
|
|
|
8.
Ozaki M. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.
Sensors,2012,12(11):14489-14507
|
CSCD被引
3
次
|
|
|
|
9.
Yin T. A multisensor fusion-based cooperative localization scheme in vehicle networks.
Electronics,2022,11(4):603
|
CSCD被引
1
次
|
|
|
|
10.
崔明月. 利用边缘计算的多车协同激光雷达SLAM.
中国图象图形学报,2021,26(1):218-228
|
CSCD被引
3
次
|
|
|
|
11.
Bai Z W. Infrastructure-based object detection and tracking for cooperative driving automation: a survey.
arXiv:2201.11871,2022
|
CSCD被引
1
次
|
|
|
|
12.
Kemsaram N. Architecture design and development of an on-board stereo vision system for cooperative automated vehicles.
Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems,2020:1-8
|
CSCD被引
1
次
|
|
|
|
13.
Cao X. A survey of cooperative hunting control algorithms for multi-AUV systems.
Proceedings of the 32nd Chinese Control Conference,2013:5791-5795
|
CSCD被引
3
次
|
|
|
|
14.
Fan Z L. A path planning method for multi-robot formation based on improved Q-learning.
Proceedings of 2021 Chinese Intelligent Systems Conference,2022:842-849
|
CSCD被引
1
次
|
|
|
|
15.
Ksrney C F F. Transverse mercator with an accuracy of a few nanometers.
Journal of Geodesy,2011,85(8):475-485
|
CSCD被引
13
次
|
|
|
|
16.
曹红玉. 基于改进的D-S证据理论的栅格地图构建.
吉林大学学报(工学版),2011,41(4):1126-1130
|
CSCD被引
2
次
|
|
|
|
17.
Zhu B C. A novel method of traversable area extraction fused with LiDAR odometry in off-road environment.
Proceedings of the 2019 IEEE International Conference on Vehicular Electronics and Safety,2019:1-6
|
CSCD被引
1
次
|
|
|
|
18.
Barrera A. Birdnet+: end-to-end 3d object detection in lidar bird's eye view.
Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems(ITSC),2020:1-6
|
CSCD被引
1
次
|
|
|
|
19.
Kim J H. Multitarget tracking with lidar and stereo vision based on probabilistic data association FIR filter.
Journal of Electrical Engineering & Technology,2022,17(1):641-654
|
CSCD被引
1
次
|
|
|
|
20.
Shenoi A. JRMOT: a real-time 3D multi-object tracker and a new large-scale dataset.
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems,2020:10335-10342
|
CSCD被引
1
次
|
|
|
|
|