帮助 关于我们

返回检索结果

推扫式高光谱显微成像系统设计与实验
Design and Experiment of Push-Broom Hyperspectral Microscopic Imaging System

查看参考文献20篇

齐美捷 1   刘立新 1,2 *   李艳茹 1   刘玉杰 1   张周锋 2   屈军乐 3  
文摘 高光谱显微成像(HMI)是一种新型无损光学诊断技术,其光谱数据能够反映样本的内部微环境变化,图像数据可以反映样本空间结构信息,因此可以作为癌症诊断工具,在未来具有广阔的应用前景。但HMI数据量大且数据结构复杂,将其应用于癌症诊断领域需要进行系统详细的数据解译。设计并搭建了一套推扫式HMI系统,并编写了系统控制、数据采集和数据分析软件,可提供多种基于机器学习的数据处理方法。基于MATLAB编制了具有图形化用户界面的HMI数据采集和数据分析软件,该软件可给出分析结果,为医生病理诊断提供了便利。利用该系统和软件进行皮肤癌的分类与分期研究,验证了系统的性能。HMI系统的光谱范围为465.5~905.1 nm,光谱分辨率约为3 nm,视场尺寸为400.18 µm× 192.47 µm,放大倍率为28.15,实际分辨率范围为1.10~1.38 µm。分别采集基底细胞癌、鳞状细胞癌和恶性黑色素瘤组织的HMI数据,利用图像数据实现了三种皮肤癌的分类,准确率为85%;利用光谱数据实现了鳞状细胞癌的分期鉴别,准确率达到96.4%。
其他语种文摘 Objective Hyperspectral microscopic imaging (HMI) technology combines optical microscopy and hyperspectral imaging to obtain both image and spectral information, thereby revealing spatial distribution and physical and chemical properties of a sample simultaneously. HMI, a novel nondestructive optical imaging technology, can be used to diagnose normal/ cancerous tissues with high accuracy, sensitivity, and specificity. However, HMIs have a large amount of data and a complex data structure; thus, systematic and detailed data interpretation is required in cancer diagnosis. In this study, a push-broom HMI system is designed and developed, and the graphical user interface (GUI)-based software for system control, data acquisition, and data analysis is programmed to aid doctors in pathological diagnosis. The classification and staging of skin cancers (basal cell carcinoma, squamous cell carcinoma, and malignant melanoma) are studied on the basis of HMI technology and machine learning algorithms to confirm the performance of the system software. We hope that our HMI system, GUI-based software, and experimental results will be useful in cancer diagnosis and have application potential in biomedicine. Methods First, a push-broom HMI system consists of a halogen lamp, objective lens, sample stage, single-axis motorized translation stage, two-axis manual translation stage, hyperspectral line-scan camera, and other optical devices (Fig. 1). The halogen lamp illuminates the sample on the sample stage. The transmitted light is collected by the objective lens and directed to the hyperspectral camera after passing through the mirror and lens group in sequence to obtain one-dimensional (1D) spatial and spectral information. The motorized translation stage controls the sample stage to move in the x-direction with a step size of 1 µm for HMI data cube acquisition. The spectral resolution of the hyperspectral camera is calibrated and calculated based on the sensor configuration ( Fig. 2). HMI system performance parameters, such as spatial resolution, field of view, and magnification, are obtained by imaging a resolution target. Second, the software with graphical user interfaces for system control, data acquisition, and data analysis is programmed using MATLAB. Several machine learning-based data processing methods are provided. Finally, the HMI data cubes of basal cell carcinoma, squamous cell carcinoma, and malignant melanoma tissues are obtained using the HMI system and data acquisition software; subsequently, the classification and staging of skin cancer are studied using data analysis software. Results and Discussions The push-broom HMI system has a spectral range of 465.5-905.1 nm, with a spectral resolution of ~3 nm, field of view of 400.18 µm × 192.47 µm,system magnification of 28.15, and actual spatial resolution of 1.10-1.38 µm (Fig.3); it can collect a data cube of 2048 pixel × 985 pixel × 151. Additionally, GUI-based HMI data acquisition software and analysis software are designed and programmed using MATLAB. The data acquisition software includes the following three modules (Fig. 4): HMI system control and data acquisition module for controlling the hyperspectral camera and motorized translation stage, HMI data acquisition, light source background correction, and frequency domain filtering; HMI data display and processing module for displaying or cropping the HMI data cube and single-band image and calculating the correlation between each band; and save and exit module for saving the data processing results and exiting the acquisition software.
来源 中国激光 ,2022,49(20):2007105 【核心库】
DOI 10.3788/CJL202249.2007105
关键词 医用光学 ; 高光谱显微成像 ; 皮肤癌 ; 图形用户界面 ; 癌症诊断
地址

1. 西安电子科技大学光电工程学院, 陕西, 西安, 710071  

2. 中国科学院西安光学精密机械研究所, 中国科学院光谱成像技术重点实验室, 陕西, 西安, 710119  

3. 深圳大学物理与光电工程学院, 光电子器件与系统教育部/广东省重点实验室, 广东, 深圳, 518060

语种 中文
文献类型 研究性论文
ISSN 0258-7025
学科 机械、仪表工业
基金 国家自然科学基金 ;  国家教育部高等学校学科创新引智计划项目 ;  中国科学院光谱成像重点实验室开放基金
文献收藏号 CSCD:7330996

参考文献 共 20 共1页

1.  Goetz A F. Imaging spectrometry for Earth remote sensing. Science,1985,228(4704):1147-1153 CSCD被引 116    
2.  Xie A G. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta,2015,139:208-215 CSCD被引 17    
3.  刘立新. 基于高光谱技术与机器学习的新疆红枣品种鉴别. 中国激光,2020,47(11):1111002 CSCD被引 17    
4.  姜杰. 星载成像高光谱的湿地景观光谱特征分析. 光谱学与光谱分析,2022,42(2):524-529 CSCD被引 2    
5.  Restaino R. Hyperspectral sharpening approaches using satellite multiplatform data. IEEE Transactions on Geoscience and Remote Sensing,2021,59(1):578-596 CSCD被引 2    
6.  徐俊杰. 机载高光谱分辨率激光雷达探测大气气溶胶的研究. 中国激光,2020,47(7):0710003 CSCD被引 24    
7.  Liang H D. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Applied Physics A,2012,106(2):309-323 CSCD被引 20    
8.  Cucci C. Reflectance hyperspectral imaging for investigation of works of art: old master paintings and illuminated manuscripts. Accounts of Chemical Research,2016,49(10):2070-2079 CSCD被引 6    
9.  Siddiqi A M. Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells. Cancer,2008,114(1):13-21 CSCD被引 5    
10.  Baltussen E J M. Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. Journal of Biomedical Optics,2019,24(1):016002 CSCD被引 3    
11.  刘立新. 高光谱成像技术在生物医学中的应用进展. 中国激光,2018,45(2):0207017 CSCD被引 16    
12.  Zhang X F. High-resolution hyperspectral microscopic imaging with single acousto-optic tunable filter based on double filtering. IEEE Access,2020,8:11570-11576 CSCD被引 1    
13.  Xu Z P. Multi-mode microscopic hyperspectral imager for the sensing of biological samples. Applied Sciences,2020,10(14):4876 CSCD被引 3    
14.  Yu C B. Microlens array snapshot hyperspectral microscopy system for the biomedical domain. Applied Optics,2021,60(7):1896-1902 CSCD被引 6    
15.  Wang C J. Multi-scale hyperspectral imaging of cervical neoplasia. Archives of Gynecology and Obstetrics,2016,293(6):1309-1317 CSCD被引 5    
16.  Aref M. Novel approach exploiting the hyperspectral imaging system for breast cancer therapy and diagnosis. Archives of Breast Cancer,2020,7(4):189-201 CSCD被引 1    
17.  杜剑. 基于卷积神经网络与显微高光谱的胃癌组织分类方法研究. 光学学报,2018,38(6):0617001 CSCD被引 10    
18.  Chen Y. Classification of hyperspectral images for detection of hepatic carcinoma cells based on spectral-spatial features of nucleus (Article). Journal of Innovative Optical Health Sciences,2020,13(1):2050002 CSCD被引 2    
19.  王健生. 显微高光谱成像的皮肤黑色素瘤浅表扩散深度识别方法. 红外与毫米波学报,2020(6):749-759 CSCD被引 1    
20.  Deng Y J. ResNet-50 based method for cholangiocarcinoma identification from microscopic hyperspectral pathology images. Journal of Physics Conference Series. 1880(1),2021:012019 CSCD被引 1    
引证文献 3

1 张钰新 基于偏振成像的面部皮肤结构和特征非接触在体测量方法 中国激光,2023,50(3):0307110
CSCD被引 2

2 刘康康 光谱成像技术在法庭科学中的应用研究 激光与光电子学进展,2024,61(4):0400005
CSCD被引 3

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号