TC4表面钛基激光熔覆层中WC熔解行为及摩擦学性能
Melting behavior and tribological properties of titanium-based laser cladding layer WC on the surface of TC4
查看参考文献19篇
文摘
|
WC是有效提升TC4合金表面摩擦学性能的熔覆合成材料之一,但其易在涂层中残留未熔颗粒,影响涂层的质量与性能。本研究采用同轴送粉激光熔覆技术,在TC4表面制备5%,10 %和15 %(质量分数/%)WC的TC4+WC钛基耐磨涂层,分析研究涂层的宏微观组织、显微硬度及摩擦学性能,重点揭示WC在熔池中的熔解和残留机制。结果表明:WC添加未影响涂层生成相种类,析出相主要包括原位TiC和基体相α-Ti、β-Ti,其中TiC与涂层中残留WC颗粒形成了共格包覆镶嵌结构相,阻止WC在熔池中的进一步熔解,导致WC在涂层中产生残留、团聚现象;WC添加量与涂层显微硬度呈正相关分布;随着材料体系中WC含量逐渐增加,涂层耐磨性能逐步提高,三个WC添加量涂层磨损率较TC4基材分别下降了约21.1%、38.2%和56.1%,但残留WC导致涂层摩擦磨损过程产生局部应力集中,摩擦学性能出现明显波动。 |
其他语种文摘
|
WC is one of the cladding synthetic materials that effectively improve the surface tribological properties of TC4 alloy, but it is easy to produce residues in the coating, which always plagues the quality and performance of the coating. In this study, TC4+WC titanium wear-resistant coatings with different WC addition ratios (5%, 10% and 15% (mass fraction/%)) were prepared on the surface of TC4 by coaxial powder feeding laser cladding technology, and the macrostructure, microhardness and tribological properties of the coating were analyzed and studied, focusing on the melting and residue mechanism of WC in the molten pool. The results show that the addition of WC does not affect the types of phases formed in the coatings. The precipitated phases mainly include in-situ TiC and matrix phases α-Ti and β-Ti. Among them, TiC and the remaining WC particles in the coating form a coherent package mosaic structure phase. The decomposition of WC in the molten pool is prevented, leading to the remaining WC is prone to residue and agglomeration. The amount of WC added is positively correlated with the microhardness of the coating. As the WC content in the material system gradually increases, the wear resistance of the coating gradually increases, and compared with the TC4 substrate, the wear rate of the coating decreases by about 21.1%, 38.2%, and 56.1%, respectively, but the residual WC leads to local stress concentration in the friction and wear process of the coating, the tribological performance fluctuates significantly. |
来源
|
航空材料学报
,2022,42(4):83-94 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000195
|
关键词
|
TC4
;
激光熔覆
;
WC
;
熔解行为
;
摩擦学
|
地址
|
1.
中国民航大学航空工程学院, 天津, 300300
2.
中国民航大学中欧航空工程师学院, 天津, 300300
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7304062
|
参考文献 共
19
共1页
|
1.
张天刚. Ni-石墨含量对TC4钛合金表面自润滑耐磨熔覆层组织与摩擦学性能的影响.
材料工程,2021,49(10):104-115
|
CSCD被引
2
次
|
|
|
|
2.
张天刚. TiC-TiB2复合相钛基稀土激光熔覆层组织与性能.
航空学报,2021,42(7):591-606
|
CSCD被引
1
次
|
|
|
|
3.
Li N. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy.
Mater Charact,2019,148:43-51
|
CSCD被引
15
次
|
|
|
|
4.
张天刚. 钛基稀土激光熔覆层组织细化机制及性能.
航空学报,2020,41(9):334-347
|
CSCD被引
5
次
|
|
|
|
5.
Hu H D. Microstructures and properties of TiCx-reinforced metal matrix composite coating on TC4 alloy prepared by laser cladding.
Material Research Innovations,2015,19(S9):192-197
|
CSCD被引
4
次
|
|
|
|
6.
Li L. Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection.
Acta Materialia,2009,57(12):3606-3614
|
CSCD被引
16
次
|
|
|
|
7.
Mateos J. Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting.
Wear,2000,239(2):274-281
|
CSCD被引
23
次
|
|
|
|
8.
周泽华. 反应等离子熔覆原位合成WC增强铁基合金涂层的工艺优化.
机械工程材料,2016,40(10):24-29,84
|
CSCD被引
3
次
|
|
|
|
9.
李军. 不锈钢基体上激光熔覆原位合成制备TiB2/WC增强镍基复合涂层.
机械工程材料,2008(11):34-38
|
CSCD被引
3
次
|
|
|
|
10.
杨光. WC颗粒增强钛基复合涂层的组织和高温磨损性能研究.
应用激光,2013,33(4):365-369
|
CSCD被引
4
次
|
|
|
|
11.
Farayibi P K. Cladding of pre-blended Ti-6Al-4V and WC powder for wear resistant applications.
Surf Coat Technol,2011,206:372-377
|
CSCD被引
15
次
|
|
|
|
12.
李春燕. 钛合金表面激光熔覆Co-WC复合涂层的组织及力学性能.
功能材料,2015,46(7):7025-7029
|
CSCD被引
7
次
|
|
|
|
13.
Wang J. Surface hardening of Fe-based alloy powders by Nd:YAG laser cladding followed by electrospark deposition with WC-Co cemented carbide.
Rare Metals,2010,29(4):380-384
|
CSCD被引
12
次
|
|
|
|
14.
Ye H. Effect of CeO_2 on microstructure and proper-ties of WC/Ni_(60) coating by laser cladding.
Advanced Materials Research,2009(79/82):795-798
|
CSCD被引
1
次
|
|
|
|
15.
Rahmand P. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La_2O_3.
Ceramics International,2014,40(10):15421-15438
|
CSCD被引
52
次
|
|
|
|
16.
Guo C. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings.
Wear,2011,270(7):492-498
|
CSCD被引
42
次
|
|
|
|
17.
Bramffit B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron.
Metall Trans,1970,1(7):1987-1995
|
CSCD被引
260
次
|
|
|
|
18.
张天刚. TC4表面Ni基激光熔覆层温度场和应力场的数值模拟.
激光与光电子学进展,2021,58(3):220-228
|
CSCD被引
3
次
|
|
|
|
19.
Wriedt H A.
Binary alloy phase diagrams,1990
|
CSCD被引
1
次
|
|
|
|
|