偏振光学成像:器件,技术与应用(特邀)
Polarimetric Optical Imaging:Devices,Technologies and Applications(Invited)
查看参考文献101篇
文摘
|
偏振是强度、波长和相位之外描述电磁波基本属性的第四个重要的“信息维度”参量,物体反射光或辐射光的偏振特性与其材质、几何形状、纹理结构和表面粗糙度、理化特性等本身性质密切相关。偏振光学成像是基于对光的偏振信息进行探测的新型光学成像手段,其利用目标反射光和背景杂散光的偏振特性差异,以达到改善目标成像质量、提高作用距离、提升探测能力和增强识别概率的目的。作为对强度、光谱和红外成像方式的有效补充手段,偏振光学成像对低信噪比复杂背景环境、强散射环境、低照度环境下的目标探测,具有重要的应用价值。结合作者多年来在偏振光学成像探测方面的研究工作基础,围绕相关的器件、技术和应用发展状况,对偏振光学成像研究领域进行了较为详细的介绍。包括偏振光学成像技术及偏振相机的国内外研究、发展和应用状况,与偏振光学成像密切相关的偏振光Stoke矩阵表示及偏振光学成像基本原理,以及研究团队在偏振相机研制及偏振光学成像探测方面开展的研究工作,主要涉及分孔径偏振光学成像系统的设计及关键器件和技术,偏振图像的信息处理技术及算法和应用。最后,对偏振光学成像研究目前需要解决的技术问题和发展方向给出了思考和建议。 |
其他语种文摘
|
Polarization is the fourth important“information dimension”parameter in addition to intensity, wavelength and phase to describe the basic properties of electromagnetic waves. The polarization characteristics of reflected or radiated light are closely related to its material,geometry,structure and surface roughness,and physicochemical properties. Polarimetric optical imaging is a novel optical imaging method based on detecting the polarization information of light,which takes advantages of the difference in polarization characteristics between the reflected light and the background stray light to improve the target imaging quality, increase the action distance, enhance the detection capability and the identification probability. As an effective complementary means to the intensity,spectral and infrared imaging methods, polarimetric optical imaging has important applications for target detection in complex background environments with low signal-to-noise ratio,strong scattering and low illumination environments. Based on the authors' years of research work in polarimetric optical imaging and detection,this paper provides a more detailed introduction to the research status of polarimetric optical imaging including the related devices,technologies and applications. We present a comprehensive analysis and introduction of the polarimetric optical imaging technology and camera,the development and the application status at home and abroad. There are mainly two types of the polarimetric optical imaging regimes,which include the division-of time polarimetric optical imaging system and the simultaneous polarimetric optical imaging system,the later one can be further classified into the division-of-amplitude system,the division-of-aperture system,and the division-of-focal-plane system. The Stoke matrix representation of polarized light closely related to polarimetric imaging and the basic imaging principle are briefly introduced. Some research works conducted by our research team in polarimetric camera development and polarimetric optical imaging detection are summarized in detail,involving the design and key devices as well as technologies of the division-of-aperture polarimetric imaging system, the information processing technologies and algorithms and applications of polarization image. To be more specific,we introduce a novel division-ofaperture chromatic polarimetric camera with full-polarization-state simultaneous detection,i. e.,including three linearly polarized states(0°,45°,and 90°)and one right circularly polarized state. We also introduce a division-of-aperture polarimetric lens with full-polarization-state simultaneous detection,which can be easily assembled to a commercial camera to change it into a polarimetric camera. We solve the image registration problem in division-of-aperture polarimetric camera by combining the phase-only correlation algorithm,the Speeded-up Robust Features (SURF) algorithm,and the Random Sample Consensus (RANSAC)algorithm. We propose a novel polarimetric optical imaging regime,namely the division-ofaperture simultaneous system based on the specifically designed color-polarizer filter,which is used for coding both the spectrum and the polarization. We report our research works on the polarimetric dehazing/descattering imaging for fog and/or underwater environments based on the optimization of the Angle of Polarization(AoP),and the low-pass filter denoising. |
来源
|
光子学报
,2022,51(8):0851505 【核心库】
|
DOI
|
10.3788/gzxb20225108.0851505
|
关键词
|
偏振光学成像
;
偏振相机
;
偏振去雾
;
偏振3D重构成像
;
图像配准
;
偏振度
;
偏振角
;
图像融合
;
分孔径
;
全偏振态
|
地址
|
1.
陕西师范大学物理学与信息技术学院, 西安, 710119
2.
中国科学院西安光学精密机械研究所, 西安, 710119
3.
西安市光信息调控与增强技术重点实验室, 西安市光信息调控与增强技术重点实验室, 西安, 710119
4.
山东理工大学物理与光电工程学院, 山东, 淄博, 255000
5.
中国人民解放军63861部队, 吉林, 白城, 137001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
陕西省自然科学基金
;
中科院一三五工程项目
|
文献收藏号
|
CSCD:7303852
|
参考文献 共
101
共6页
|
1.
Chun C S L. Polarimetric imaging system for automatic target detection and recognition.
Physics Innovations Inc Inver Grove Heights MN,2000
|
CSCD被引
1
次
|
|
|
|
2.
Forssell G. Measurements of polarization properties of camouflaged objects and of the denial of surfaces covered with cenospheres.
SPIE. 5075,2003:246-258
|
CSCD被引
1
次
|
|
|
|
3.
Duggin M J. The impact of clutter variance on feature discrimination in imaging polarimetry.
SPIE. 5432,2004:75-84
|
CSCD被引
1
次
|
|
|
|
4.
Aron Y. Polarization in the LWIR-a method to improve target acquisition.
SPIE. 5783,2005:653-661
|
CSCD被引
3
次
|
|
|
|
5.
Harchanko J S. Water-surface object detection and classification using imaging polarimetry.
SPIE. 5888,2005:588815
|
CSCD被引
1
次
|
|
|
|
6.
Lavigne D A. Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands.
SPIE. 8160,2011:816007
|
CSCD被引
1
次
|
|
|
|
7.
Pezzaniti J L. Detection of obscured targets with IR polarimetric imaging.
SPIE. 9072,2014:90721D
|
CSCD被引
1
次
|
|
|
|
8.
Zhao Yongqiang. Progress of infrared polarimetric imaging detection.
Filght Control and Detection,2019,2:77-84
|
CSCD被引
1
次
|
|
|
|
9.
Wong G. A novel snapshot polarimetric imager.
SPIE. 8541,2012:85410G
|
CSCD被引
1
次
|
|
|
|
10.
李松. 分振幅偏振成像相机标定方法研究.
光子学报,2020,49(7):0711001
|
CSCD被引
5
次
|
|
|
|
11.
陈振跃. 微光偏振成像系统设计及实验.
光子学报,2014,43(4):0411003
|
CSCD被引
2
次
|
|
|
|
12.
Zhang Wenfei. Real-time image haze removal using an aperture-division polarimetric camera.
Applied Optics,2017,56(4):942-947
|
CSCD被引
10
次
|
|
|
|
13.
Qi Ji. Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging.
Biomedical Optics Express,2017,8(11):4933-4946
|
CSCD被引
7
次
|
|
|
|
14.
Liang Jian. Reconfigurable snapshot polarimetric imaging technique through spectralpolarization filtering.
Optics Letters,2019,44(18):4574-4577
|
CSCD被引
2
次
|
|
|
|
15.
Li Mengke. Multisensor image fusion for automated detection of defects in printed circuit boards.
IEEE Sensors Journal,2021,21(20):23390-23399
|
CSCD被引
4
次
|
|
|
|
16.
Huang Yaokang. Unsupervised anomaly detection of MEMS in low illumination based on polarimetric support vector data description.
Optics Express,2021,29(22):35651-35663
|
CSCD被引
1
次
|
|
|
|
17.
Liu Yirong. Effect of the samples' surface with complex microscopic geometry on 3×3 Mueller matrix measurement of tissue bulks.
Frontiers in Bioengineering and Biotechnology,2022,10:841298
|
CSCD被引
1
次
|
|
|
|
18.
孙晓兵. 可见和红外偏振遥感技术研究进展及相关应用综述.
大气与环境光学学报,2010,5(3):175-189
|
CSCD被引
21
次
|
|
|
|
19.
赵继芝. 大气云层分布的偏振激光后向散射研究.
应用光学,2011,32(5):1037-1043
|
CSCD被引
4
次
|
|
|
|
20.
金伟其. 水下光电成像技术与装备研究进展(下).
红外技术,2011,33(3):125-132
|
CSCD被引
20
次
|
|
|
|
|