Fabrication and Spectroscopic Properties of Heavily Pr~(3+) Doped Selenide Chalcogenide Glass and Fiber for Mid-infrared Fiber Laser
用于中红外光纤激光器的高Pr~(3+)掺杂硒化物硫系玻璃和光纤制备及其光谱特性
查看参考文献31篇
文摘
|
In order to develop a high gain medium for fiber lasers operating at 3-5 μm waveband,0-0.4%(in weight)Pr~(3+) ions doped Ge_(12)As_(20.8)Ga_4Se_(63.2) selenide chalcogenide glasses were prepared and the 0.2%(in weight)Pr~(3+) ions doped one was successfully drawn into step-index double-cladding fiber with the lowest loss of 2.95 dB/m@6.58 μm by a multistage rod-in-tube method.The electron-probe measure microanalysis(EPMA),X-ray diffraction (XRD),differential scanning calorimeter(DSC),field emission transmission electron microscope(FE-TEM),transmission and mid-infrared fluorescence spectra were carried out to analyze the dispersion of Pr~(3+) ions in glass,the impurity contents,thermal and optical changes caused by the Pr~(3+) ions’introduction.By analyzing the absorption and emission measurements of the serial glasses with the Judd-Ofelt theory,the Judd-Ofelt strength parameters,transition probabilities,exited state lifetime,branching ratios,and emission cross-sections were also calculated.This selenide chalcogenide glass has high Pr~(3+) ions’solubility and emission characteristic,good thermal stability and fiber forming performance,indicating that it has potential to be used as mid-infrared laser working medium. |
其他语种文摘
|
为了研发用于3~5 μm波段光纤激光器的增益介质,制备了重量百分比为0~0.4%不同浓度Pr~(3+)离子掺杂的Ge_(12)As_(20.8)Ga_4Se_(63.2)硒化物硫系玻璃。通过多级棒管法,重量百分比为0.2%的Pr~(3+)离子掺杂玻璃被成功拉制成阶跃型双包层光纤,损耗最低为2.95 dB/m(位于6.58 μm处)。采用电子探针显微分析(EPMA)、X射线衍射(XRD)、差示扫描量热(DSC)、场发射透射电子显微镜(FE-TEM)、透射光谱和中红外荧光光谱分析了玻璃中Pr~(3+)离子的分散性、杂质含量以及Pr~(3+)离子引入引起的热、光学性质变化。通过玻璃的吸收和发射光谱并结合Judd-Ofelt理论,计算了Judd-Ofelt强度参数、辐射跃迁几率、荧光寿命、荧光分支比和受激发射截面。这种硒化硫系玻璃具有较高的Pr~(3+)离子溶解度和中红外发光特性、良好的热稳定性和成纤性能,表明其具有作为中红外激光工作介质的潜力。 |
来源
|
发光学报
,2022,43(6):851-861 【核心库】
|
DOI
|
10.37188/CJL.20220088
|
关键词
|
chalcogenide glass
;
rare-earth ions
;
spectroscopy
;
mid-infrared fluorescence
;
infrared fiber
|
地址
|
1.
Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, 710119
2.
University of Chinese Academy of Sciences, Beijing, 100049
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1000-7032 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
中国科学院创新交叉团队项目
|
文献收藏号
|
CSCD:7302873
|
参考文献 共
31
共2页
|
1.
Willer U. Near-and mid-infrared laser monitoring of industrial processes,environment and security applications.
Opt. Lasers Eng,2006,44(7):699-710
|
CSCD被引
32
次
|
|
|
|
2.
Seddon A B. Chalcogenide glasses:a review of their preparation,properties and applications.
J. Non-Cryst. Solids,1995,184:44-50
|
CSCD被引
27
次
|
|
|
|
3.
Heo J. Chalcohalide glasses for infrared fiber optics.
Opt. Eng,1991,30(4):470-479
|
CSCD被引
1
次
|
|
|
|
4.
Waynant R W. Mid-infrared laser applications in medicine and biology.
Philos. Trans. Roy. Soc. A-Math. Phys. Eng. Sci,2001,359(1780):635-644
|
CSCD被引
14
次
|
|
|
|
5.
Uemura O. Local atomic arrangement in Ge-Te and Ge-S-Te glasses.
J. NonCryst. Solids,1996,205/207:189-193
|
CSCD被引
2
次
|
|
|
|
6.
Schneider J. Fluoride fibre laser operating at 3.9 μm.
Electron. Lett,1995,31(15):1250-1251
|
CSCD被引
6
次
|
|
|
|
7.
Schneide J. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength.
Appl. Opt,1997,36(33):8595-8600
|
CSCD被引
14
次
|
|
|
|
8.
Tang Z Q. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass.
Opt. Mater. Express,2015,5(4):870-886
|
CSCD被引
5
次
|
|
|
|
9.
Liu Z J. Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres.
RSC Adv,2017,7(66):41520-41526
|
CSCD被引
3
次
|
|
|
|
10.
Sojka L. Mid-infrared emission in Tb3+-doped selenide glass fiber.
J. Opt. Soc. Amer. B,2017,34(3):A70-A79
|
CSCD被引
6
次
|
|
|
|
11.
Cui J. Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser.
Opt. Mater. Express,2018,8(8):2089-2102
|
CSCD被引
5
次
|
|
|
|
12.
Sojka L. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+.
Opt. Mater. Express,2012,2(11):1632-1640
|
CSCD被引
3
次
|
|
|
|
13.
Aitken B G. Clustering of rare earths in GeAs sulfide glass.
C. R. Chim,2002,5(12):865-872
|
CSCD被引
1
次
|
|
|
|
14.
Nunes J J. Room temperature mid-infrared fiber lasing beyond 5 μm in chalcogenide glass small-core step index fiber.
Opt. Lett,2021,46(15):3504-3507
|
CSCD被引
4
次
|
|
|
|
15.
Hu R F. Study on the phase transition of fracture region of laser induced damage in fused glass by focused nanosecond pulse.
Optik,2017,140:427-433
|
CSCD被引
2
次
|
|
|
|
16.
Zhu L. Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing.
Opt. Mater,2018,85:220-225
|
CSCD被引
4
次
|
|
|
|
17.
Shiryaev V S. Preparation of high purity glasses in the Ga-Ge-As-Se system.
Opt. Mater,2014,37:18-23
|
CSCD被引
6
次
|
|
|
|
18.
Shiryaev V S. Special pure germanium-rich Ga-Ge-As-Se glasses for active mid-IR fiber optics.
Mater. Res. Bull,2018,107:430-437
|
CSCD被引
1
次
|
|
|
|
19.
Judd B R. Optical absorption intensities of rare-earth ions.
Phys. Rev,1962,127(3):750-761
|
CSCD被引
476
次
|
|
|
|
20.
Ofelt G S. Intensities of crystal spectra of rare-earth ions.
J. Chem. Phys,1962,37(3):511-520
|
CSCD被引
455
次
|
|
|
|
|