Ultrafast Terahertz Characteristic Spectroscopy Based on Femtosecond Laser and Its Application(Invited)
基于飞秒激光的超快太赫兹特征波谱技术及其应用(特邀)
查看参考文献191篇
文摘
|
Terahertz(THz) waves(0.1 THz ~ 10 THz,1 THz = 1012 Hz) locate in the transitional region of the electromagnetic spectrum,between the classical electronics(radio,microwave and millimeter wave) and the photonics(infrared,visible,ultraviolet and x-ray). As a kind of coherent measurement technology in THz frequency range,THz characteristic spectroscopy,with high sensitivity,rapidness and nondestructive testing as well as other unique advantages,has shown an attractive promising application prospect in detection,analysis and identification of biochemical molecules and materials. As the widely used broadband THz wave source,THz Photoconductive Antenna(THz-PCA)can emit broadband THz radiation. Therefore,as one of the promising THz emitters and detectors,THz-PCA has the advantages to overcome the defects confronted by other devices (e. g.,low operation frequency,strict working condition and bulk size)and these unique advantages have made THz-PCA become the most commonly utilized THz sources in THz Time-Domain Spectroscopy(THz-TDS). Although a variety of THz-PCAs are commercially available and become indispensable in many practical applications currently, the insufficient radiation THz power still hinder the further development of THz technologies based on THz- PCA. In order to further promote the research interests of THz-PCA,the working mechanism and some new research progress,technical challenges in the process of practical application and strategies of THz- PCA have to be discussed and analyzed. The underlying physical mechanism of the transient response in THz-PCA emitter and detector are investigated,as well as the influence of several parameters including the power intensity of femtosecond pump laser,the laser pulse duration and the carrier lifetime of the substrate material,are also analyzed based on theoretical models,which provide the technical foundation for designing the efficient THz-PCA. Moreover,a plenty of valuable research schemes have been proposed to develop the THz technologies based on THz-PCA in the past decades,including photoconductive materials and structure design of THz-PCA. To be specific,the sub-picosecond carrier life time of photoconductor can be realized by creating a massive density of defects,dislocations and scattering centers in the substrate material. As for structure design of THz-PCA,the previous researches on THz-PCA was mainly focused on the saturation effect at high pump power and the large aperture dipoles,dipole arrays and interdigitated electrodes structures have been investigated during the early stage. In the recent years,as the quick development of micro-nano fabrication technologies,the THz-PCA incorporated with plasmonic nanostructures and all-dielectric nanostructures have also been widely investigated for improving its performances. In this paper,the working principle and development status of THz-PCAs based on ultrashort pulsed laser are introduced, including theoretical models, substrate materials and different structures of photoconductive antennas. Furthermore, with the dramatic development of source and detector components,THz spectroscopy technology has been utilized in various fields such as chemical detection and substance identification,biomedical application and pharmaceutical industry. |
其他语种文摘
|
太赫兹特征波谱技术作为一种太赫兹波段的相干测量技术,具有高灵敏、快速、无损检测等显著特点,可以有效获得来源于物质分子的低频集体振动、转动模式以及与周围分子的弱相互作用(氢键、范德华力等)而产生的特征“指纹谱”信息,已在生化分子检测、材料分析与辨识等方面展现出非常广阔的应用前景。太赫兹光电导天线作为一类应用广泛的太赫兹波源,能够产生宽频带的太赫兹辐射,由其构成的超快太赫兹特征波谱系统在生化分子和材料分析等方面已显现重要应用。本文首先介绍了基于超短脉冲激光的太赫兹光电导天线的工作原理及其发展现状,包括理论模型、衬底材料以及不同结构形式。随后,介绍了由太赫兹光电导天线作为宽频带太赫兹波源而构建的超快太赫兹特征波谱系统及其工作机理,详细阐述了基于飞秒激光的超快太赫兹特征波谱技术及其应用取得的一些最新研究进展,并分析讨论了该技术在实际应用过程中面临的挑战和应对策略。 |
来源
|
光子学报
,2022,51(7):0751403 【核心库】
|
DOI
|
10.3788/gzxb20225107.0751403
|
关键词
|
Terahertz waves
;
Photoconductive antenna
;
Femtosecond laser
;
Characteristic spectroscopy
;
Substance identification
;
Machine learning
|
地址
|
Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, 710119
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学;电子技术、通信技术 |
基金
|
国家自然科学基金
;
the“Hundred of Talents Programs”of Chinese Academy of Sciences
;
the Innovative Project of Chinese Academy of Sciences
|
文献收藏号
|
CSCD:7281387
|
参考文献 共
191
共10页
|
1.
Harter T. Wireless THz link with optoelectronic transmitter and receiver.
Optica,2019,6:1063-1070
|
CSCD被引
9
次
|
|
|
|
2.
Tonouchi M. Cutting-edge terahertz technology.
Nature Photonics,2007,1(2):97-105
|
CSCD被引
357
次
|
|
|
|
3.
Xu W. Mechanisms and applications of terahertz metamaterial sensing:a review.
Nanoscale,2017,9(37):13864-13878
|
CSCD被引
20
次
|
|
|
|
4.
Graham-Rowe D. Terahertz takes to the stage.
Nature Photonics,2007,1(2):75-77
|
CSCD被引
7
次
|
|
|
|
5.
Mahieu E. Recent northern hemisphere stratospheric HCl increase due to atmospheric circulation changes.
Nature,2014,515:104-107
|
CSCD被引
1
次
|
|
|
|
6.
Guerboukha H. Exploiting k-space/frequency duality toward real-time terahertz imaging.
Optica,2018,5(2):109-116
|
CSCD被引
5
次
|
|
|
|
7.
Pan M. Guided terahertz pulse reflectometry with double photoconductive antenna.
Applied Optics,2020,59(6):1641-1647
|
CSCD被引
1
次
|
|
|
|
8.
Yardimci N T. Nanostructure-enhanced photoconductive terahertz emission and detection.
Small,2018,14:1802437
|
CSCD被引
5
次
|
|
|
|
9.
Burford N M. Review of terahertz photoconductive antenna technology.
Optical Engineering,2017,56(1):010901
|
CSCD被引
19
次
|
|
|
|
10.
Auston D H. Picosecond optoelectronic switching and gating in silicon.
Applied Physics Letters,1975,26(3):101-103
|
CSCD被引
46
次
|
|
|
|
11.
Grischkowsky D. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors.
Journal of the Optical Society of America B,1990,7(10):2006-2015
|
CSCD被引
98
次
|
|
|
|
12.
Baxter J B. Terahertz spectroscopy.
Analytical Chemistry,2011,83(12):4342-4368
|
CSCD被引
29
次
|
|
|
|
13.
Banks P A. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra.
Physical Chemistry Chemical Physics,2021,23(36):20038-20051
|
CSCD被引
2
次
|
|
|
|
14.
Ozaki Y. Advances,challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase.
Chemical Society Reviews,2021,50(19):10917-10954
|
CSCD被引
1
次
|
|
|
|
15.
Walther M. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy.
Biopolymers,2002,67:310-313
|
CSCD被引
54
次
|
|
|
|
16.
Zhu Z J. Characteristic fingerprint spectrum of neurotransmitter norepinephrine with broadband terahertz time-domain spectroscopy.
Analyst,2019,144(8):2504-2510
|
CSCD被引
9
次
|
|
|
|
17.
Perticaroli S. Painting biological low-frequency vibrational modes from small peptides to proteins.
Physical Chemistry Chemical Physics,2015,17(17):11423-11431
|
CSCD被引
1
次
|
|
|
|
18.
Gonzalez-Jimenez M. Observation of coherent delocalized phononlike modes in DNA under physiological conditions.
Nature Communications,2016,7:11799
|
CSCD被引
1
次
|
|
|
|
19.
Gonzalez-Jimenez M. Low-frequency vibrational modes in Gquadruplexes reveal the mechanical properties of nucleic acids.
Physical Chemistry Chemical Physics,2021,23(23):13250-13260
|
CSCD被引
2
次
|
|
|
|
20.
Esenturk O. Terahertz spectroscopy of dicyano-benzenes:Anomalous absorption intensities and spectral calculations.
Chemical Physics Letters,2007,442(1):71-77
|
CSCD被引
2
次
|
|
|
|
|