高功率矩形光斑激光非相干空间合束
High power laser incoherent spatial beam combining with rectangular spot
查看参考文献11篇
文摘
|
激光表面热处理技术是进行金属材料表面强化和改性的最有效手段之一。为实现高速、柔性激光表面热处理,按照矩阵平行排列18束光纤输出的972 nm半导体激光束,通过光束准直和空间非相干合束,获得了具有矩形光斑特征的10 kW级合束激光。在理论分析准直激光束的半径、相邻光束间距与合束激光的光斑搭接率之间变化规律、采用Code V光学设计软件建立合束器结构模型及TracePro光学仿真软件模拟合束激光光斑能量分布的基础上,完成了10 kW级18×1矩形光斑激光非相干空间合束器的研制。在200 mm的合束长度内实现了具有单一矩形光斑形貌、最大合束功率10.249 kW、焦斑尺寸31 mm×11 mm、中心波长972.34 nm、谱线宽度2.27 nm的合束激光输出。 |
其他语种文摘
|
This work lays a foundation for promoting the application of incoherent spatial combining laser in laser surface heat treatment with high speed and flexible processing. 18 semiconductor laser beams at 972 nm output by the fiber were arranged in parallel according to the "matrix". By implementing beam collimation and incoherent spatial beam combination, a 10 kW combined laser beam with rectangular spot characteristics was obtained. The radius of the collimated laser beam, the distance between adjacent laser beams and the overlapping rate of the combined laser were theoretically analyzed, respectively. The structural model of the beam combiner was built using Code V software, and the spot energy distribution of the combined laser was simulated using TracePro software. Based on the above work, a 10 kW 18×1 incoherent spatial laser combiner of outputting a rectangular spot was developed. Within the combined length of 200 mm, the combined laser beam had a single rectangular spot shape. A beam combining power of 10.249 kW was achieved with a focal spot diameter of 31 mm×11 mm, a center wavelength of 972.34 nm and a linewidth of 2.27 nm. |
来源
|
红外与激光工程
,2022,51(4):20210268 【核心库】
|
DOI
|
10.3788/IRLA20210268
|
关键词
|
空间非相干合束
;
光纤传输
;
矩形光斑
;
10 kW合束激光
;
激光表面热处理
|
地址
|
1.
西北大学光子学与光子技术研究所, 陕西, 西安, 710127
2.
省部共建西部能源光子技术国家重点实验室, 陕西省省部共建西部能源光子技术国家重点实验室, 陕西, 西安, 710127
3.
中国科学院西安光学精密机械研究所空间光学应用研究室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
电子技术、通信技术 |
基金
|
陕西省重点研发计划
;
陕西省教育厅服务地方专项计划
|
文献收藏号
|
CSCD:7242343
|
参考文献 共
11
共1页
|
1.
Siddiqui A A. Recent trends in laser cladding and surface alloying.
Optics & Laser Technology,2021,134:106619
|
CSCD被引
52
次
|
|
|
|
2.
Zhang Lei. Performance studies on laser absorbing coating.
Chinese Optics. (in Chinese),2021,14(3):560-565
|
CSCD被引
2
次
|
|
|
|
3.
Lin Xingchen. 10 kW CW diode laser cladding source and thermal effect.
Chinese Optics. (in Chinese),2019,12(4):820-825
|
CSCD被引
3
次
|
|
|
|
4.
Mullo J L. Effect of laser heat treatment on the mechanical performance and microstructural evolution of AISI 1045 Steel-2017-T4 aluminum alloy joints during rotary friction welding.
Journal of Materials Engineering and Performance,2021,30:2617-2631
|
CSCD被引
1
次
|
|
|
|
5.
Dang Wenjia. Recent advances in highpower continuous-wave ytterbium-doped fiber lasers.
Chinese Optics. (in Chinese),2020,13(4):677-694
|
CSCD被引
1
次
|
|
|
|
6.
Wang Jianjun. Ten-year review and prospect on mode instability research of fiber lasers.
High Power Laser and Particle Beams. (in Chinese),2020,32(12):121003
|
CSCD被引
2
次
|
|
|
|
7.
Ye Yun. Research progress in high power ytterbium doped fiber laser oscillator.
Laser & Optoelectronics Progress. (in Chinese),2018,55(12):120006
|
CSCD被引
1
次
|
|
|
|
8.
Deng Zhonghua. Corrosion resistance and mechanism of metallic surface processed by square-spot laser shock peening.
Journal of Materials Engineering. (in Chinese),2018,46(8):140-147
|
CSCD被引
1
次
|
|
|
|
9.
Wang Huilin. Effect of spot type on microstructure and properties of MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by laser cladding.
Surface Technology. (in Chinese),2019,48(6):130-137
|
CSCD被引
2
次
|
|
|
|
10.
Bai Yang. Incoherent space beam combining of fiber-transmitted semiconductor lasers for oil well laser perforation.
IEEE Access,2019,7:154457-154465
|
CSCD被引
5
次
|
|
|
|
11.
Zha Rongwei. 19×1 space incoherent beam combining for 10 kW laser perforation in oil well.
Infrared and Laser Engineering. (in Chinese),2019,48(10):1005013
|
CSCD被引
1
次
|
|
|
|
|