铝粉燃料连续旋转爆轰发动机工作特性
Operating Characteristics of Aluminum Powder Rotating Detonation Engine
查看参考文献18篇
文摘
|
为探索基于铝粉燃料的连续旋转爆轰发动机独特的爆轰特性及推进性能,开展铝粉/空气和氢气/空气连续旋转爆轰发动机热试车对比实验。实验结果表明:在相同发动机构型及条件下,铝粉/空气连续旋转爆轰发动机的推力比氢气/空气高35%;铝粉/空气的峰值压强比氢气/空气高11%;铝粉/空气的爆轰波传播速度比氢气/空气低11%;铝粉/空气工作模态同氢气/空气一样,均为单波模态。上述差异一方面由燃料不同物理化学性质所致,另一方面由气-固两相爆轰和纯气相爆轰差异所致。所得研究结果可为吸气式粉末燃料连续旋转爆轰发动机奠定一定的实验和理论基础。 |
其他语种文摘
|
The aluminum/air and hydrogen/air rotating detonation engines (RDEs) are experimentally studied and compared to reveal the specific detonation characteristics and propulsion performance of aluminum powder RDE.The RDE engines work at the equivalence ratio of 1 and the air mass flow rate of 260 g/s. It's found that the thrust of aluminum/air RDE is 35% higher than that of hydrogen/air RDE; the pressure peak of aluminum/air is 11% higher than that of hydrogen/air; the detonation velocity of aluminum/air is 11% lower than that of hydrogen/air; and the detonation propagation mode of auminum/air is the same as that of hydrogen/air, which are single wave mode. The above differences are not only caused by the different properties of fuel,but also caused by the difference between the gas-solid two-phase detonation and the gaseous detonation. The experimental results could provide a feasible solution for the air breathing aluminum powder RDE and establish a foundation for the solid powder RDEs. |
来源
|
兵工学报
,2022,43(5):1046-1053 【核心库】
|
DOI
|
10.12382/bgxb.2022.0002
|
关键词
|
粉末燃料连续旋转爆轰发动机
;
铝粉燃料
;
热试车实验
;
气-固两相爆轰
;
粉末爆轰
;
推进性能
;
爆轰特性
|
地址
|
南京理工大学, 瞬态物理国家重点实验室, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航空 |
基金
|
国家自然科学基金项目
;
中央高校基本科研业务费专项资金资助项目
;
江苏省自然科学基金
|
文献收藏号
|
CSCD:7218492
|
参考文献 共
18
共1页
|
1.
Wolaиski P. Detonative propulsion.
Proceedings of the Combustion Institute,2013,34(1):125-158
|
CSCD被引
107
次
|
|
|
|
2.
刘威. 脉冲爆轰发动机水下单次爆轰燃气射流初期流场特性.
兵工学报,2020,41(增刊1):104-109
|
CSCD被引
2
次
|
|
|
|
3.
Lu F K. Rotating detonation wave propulsion: Experimental challenges,modeling,and engine concepts.
Journal of Propulsion and Power,2014,30(5):1125-1142
|
CSCD被引
29
次
|
|
|
|
4.
Bian J. Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures.
Fuel,2021,286:119458
|
CSCD被引
7
次
|
|
|
|
5.
张树杰. 当量比对连续旋转爆轰发动机的影响研究.
兵工学报,2017,38(增刊1):1-7
|
CSCD被引
4
次
|
|
|
|
6.
李宝星. 煤油燃料旋转爆轰波起爆与传播特性实验研究.
兵工学报,2020,41(7):1339-1346
|
CSCD被引
12
次
|
|
|
|
7.
Krishnan V B. Propulsion from the pulse detonation of solid propellant pellet-projectiles.
Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2006
|
CSCD被引
1
次
|
|
|
|
8.
Bykovskii F A. Detonation combustion of coal.
Combustion, Explosion, and Shock Waves,2012,48(2):203-208
|
CSCD被引
11
次
|
|
|
|
9.
Bykovskii F A. Detonation burning of anthracite and lignite particles in a flow-type radial combustor.
Combustion, Explosion, and Shock Waves,2016,52(6):703-712
|
CSCD被引
6
次
|
|
|
|
10.
Bykovskii F A. Detonation of a coal-air mixture with addition of hydrogen in plane-radial vortex chambers.
Combustion, Explosion, and Shock Waves,2011,47(4):473-482
|
CSCD被引
12
次
|
|
|
|
11.
Bykovskii F A. Continuous spin detonation of a coal-air mixture in a flow-type plane-radial combustor.
Combustion, Explosion, and Shock Waves,2013,49(6):705-711
|
CSCD被引
11
次
|
|
|
|
12.
Sajvadori M. Numerical investigation of shock-induced combustion of coal-h2-air mixtures in a unwrapped non-premixed detonation channel.
Proceedings of AIAA Scitech 2020 Forum,2020
|
CSCD被引
1
次
|
|
|
|
13.
Dunn I B. Evidence of carbon driven detonation waves within a rotating detonation engine.
Proceedings of AIAA Scitech 2021 Forum,2021
|
CSCD被引
1
次
|
|
|
|
14.
Dunni B. Multiphase rotating detonation engine.
Proceedings of ASME Turbomachinery Technical Conference and Exposition,2020
|
CSCD被引
1
次
|
|
|
|
15.
Dunn I B. Carbon-based multi-phase rotating detonation engine.
Journal of Energy Resources Technology,2021,144(4):0421019
|
CSCD被引
8
次
|
|
|
|
16.
Dunn I B. Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed rotating detonation engine.
Fuel,2021,302:121128
|
CSCD被引
10
次
|
|
|
|
17.
Zhang F. Aluminum particles-air detonation at elevated pressures.
Shock Waves,2006,15(5):313-324
|
CSCD被引
10
次
|
|
|
|
18.
Lee J H S.
The detonation phenomenon,2008
|
CSCD被引
68
次
|
|
|
|
|