缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响
Effect of container loading method of corrosion inhibitor combination on corrosion resistance of aluminum alloy coating
查看参考文献22篇
文摘
|
采用减压吸附和层层自组装技术在介孔二氧化硅纳米颗粒(mesoporous silica nanoparticles,MSN)上同时负载8-羟基喹啉(8-hydroxyquinoline,8-HQ)和苯并三氮唑(1H-benzotriazole,BTA),制备缓蚀剂复合纳米容器(MSN-QB),并将其添加至环氧涂层中从而获得新的涂层(MQB)。利用扫描电镜、透射电镜、傅里叶红外光谱、Zeta电位测试、热重分析等研究缓蚀剂负载前后纳米容器结构的变化和缓蚀剂的刺激响应释放行为,并通过电化学测试和盐雾实验研究层层自组装方式对涂层防护性能的提升。结果表明:MSN-QB中8-HQ和BTA的负载量分别为6.8%(质量分数,下同)和7.1%。MSN-QB具有pH响应特性,8-HQ和BTA在中性条件下释放均受到抑制,在碱性(pH=10)和酸性(pH=4)条件下均可释放,碱性条件下的释放速率更高。MQB涂层具有最佳的耐蚀性能,在3.5%NaCl溶液中浸泡20天后,MQB涂层的低频阻抗值(2.0×10~9Ω·cm~2)最大,是缓蚀剂单独负载并添加到涂层中的两倍以上。 |
其他语种文摘
|
The composite nanocontainer of corrosion inhibitor(MSN-QB)was prepared by loading octahydroxyquinoline(8-HQ)and benzotriazole(BTA)on mesoporous silica nanoparticles(MSN)simultaneously using vacuum adsorption and layer-by-layer self-assembly technology,and added to the epoxy coating to obtain a new coating(MQB).SEM,TEM,FT-IR,Zeta-potential and TGA were used to study the structure changes of the nanocontainer before and after loading corrosion inhibitors and the stimulus response release behavior of the corrosion inhibitors,and electrochemical test and salt spray test were used to study the improvement of coating protection performance by layer-by-layer self-assembly technique.The results show that the loadings of 8-HQ and BTA in MSN-QB are 6.8%(mass fraction)and 7.1%,respectively.MSN-QB has pH response characteristics.The release of 8-HQ and BTA are both inhibited under neutral conditions,but can be released under alkaline(pH=10)and acidic(pH=4)conditions.The release rate under alkaline conditions is higher.MQB coating has the best corrosion resistance.After immersed in 3.5%NaCl solution 20 d,the MQB coating has the largest|Z|0.01Hzvalue(2.0×10~9Ω·cm~2),more than twice that of MQ+MB coating. |
来源
|
材料工程
,2022,50(2):153-163 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000051
|
关键词
|
缓蚀剂组合
;
负载方式
;
层层自组装
;
铝合金
;
耐蚀性
|
地址
|
1.
北京航空航天大学材料科学与工程学院, 北京, 100191
2.
中国航发北京航空材料研究院, 北京, 100095
3.
北京市先进铝合金材料及应用工程技术研究中心, 北京市先进铝合金材料及应用工程技术研究中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:7201684
|
参考文献 共
22
共2页
|
1.
Samadzadeh M. A review on self-healing coatings based on micro/nanocapsules.
Progress in Organic Coatings,2010,68(3):159-164
|
CSCD被引
16
次
|
|
|
|
2.
Zhang F. Self-healing mechanisms in smart protective coatings:a review.
Corrosion Science,2018,144:74-88
|
CSCD被引
59
次
|
|
|
|
3.
Leal D A. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection.
Corrosion Science,2018,130:56-63
|
CSCD被引
16
次
|
|
|
|
4.
Izadi M. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers.
Applied Surface Science,2018,440:491-505
|
CSCD被引
4
次
|
|
|
|
5.
Tavandashti N P. Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects.
Corrosion Science,2016,112:138-149
|
CSCD被引
15
次
|
|
|
|
6.
杜娟. 金属表面制备绿色环保防腐膜技术的研究进展.
材料工程,2020,48(2):22-31
|
CSCD被引
3
次
|
|
|
|
7.
Ma X. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy.
Corrosion Science,2017,120:139-147
|
CSCD被引
7
次
|
|
|
|
8.
Zheng Z L. Selfhealing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers.
Advanced Functional Materials,2013,23(26):3307-3314
|
CSCD被引
7
次
|
|
|
|
9.
Xu J B. A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings.
Corrosion Science,2018,140:349-362
|
CSCD被引
15
次
|
|
|
|
10.
Shi H W. Sub-micrometer mesoporous silica containers for active protective coatings on AA 2024-T3.
Corrosion Science,2017,127:230-239
|
CSCD被引
4
次
|
|
|
|
11.
王赟. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用.
材料工程,2019,47(2):122-128
|
CSCD被引
4
次
|
|
|
|
12.
Gao H. High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91Dmagnesium alloy.
Corrosion Science,2010,52(5):1603-1609
|
CSCD被引
28
次
|
|
|
|
13.
Abdolah Z M. Synergetic active corrosion protection of AA2024-T3by 2D-anionic and 3D-cationic nanocontainers loaded with Ce and mercaptobenzothiazole.
Corrosion Science,2018,135:35-45
|
CSCD被引
8
次
|
|
|
|
14.
Ghazi A. The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating.
Corrosion Science,2015,94:207-217
|
CSCD被引
9
次
|
|
|
|
15.
Thommes M. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro-and mesoporous silicas.
Langmuir,2006,22(2):756-764
|
CSCD被引
11
次
|
|
|
|
16.
Xiong L L. Improving the corrosion protection properties of PVB coating by using salicylaldehyde@ ZIF-8/graphene oxide two-dimensional nanocomposites.
Cor-rosion Science,2019,146:70-79
|
CSCD被引
8
次
|
|
|
|
17.
Borisova D. Mesoporous silica nanoparticles for active corrosion protection.
ACS Nano,2011,5(3):1939-1946
|
CSCD被引
22
次
|
|
|
|
18.
Recloux I. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024aluminium alloys.
Applied Surface Science,2015,346:124-133
|
CSCD被引
4
次
|
|
|
|
19.
Shchukin D G. Layer-by-layer assembled nanocontainers for self-healing corrosion protection.
Advanced Materials,2006,18(13):1672-1678
|
CSCD被引
33
次
|
|
|
|
20.
Shchukin D G. Surface-engineered nanocontainers for entrapment of corrosion inhibitors.
Advanced Functional Materials,2007,17(9):1451-1458
|
CSCD被引
11
次
|
|
|
|
|