硫化物固态电解质Li_6PS_5Cl的球磨-固相烧结制备与性能
Preparation and properties of sulfide solid state electrolyte Li_6PS_5Cl by ball milling-solid phase sintering
查看参考文献31篇
文摘
|
硫银锗矿结构的硫化物固态电解质Li_6PS_5Cl(LPSC)具有离子电导率高(>3×10~(-3)S·cm~(-1))和对锂稳定性良好等特点,是构建全固态锂离子电池的理想电解质材料之一,具有良好的发展前景。本工作采用高能球磨和惰性气氛固相烧结相结合的方法制备硫银锗矿型固态电解质LPSC,并采用粉末X射线衍射(XRD)、拉曼光谱(Raman spectra)和扫描电子显微镜(SEM)等对其进行表征,探究制备工艺对LPSC结构、成分和电学性质等的影响。结果表明:高能球磨会破坏原料的晶粒,降低晶粒尺寸,延长球磨时间有利于LPSC前驱体粉末的非晶化和后续烧结,提高烧结温度将促进制备的LPSC电解质的物相变纯和离子电导率升高,但烧结温度过高会导致LPSC的分解。综合考虑球磨时间和烧结温度对材料离子电导率和电子电导率的影响,经8 h球磨和500℃烧结制备的LPSC在室温下具有最高的离/电子电导率比(2.091×10~5),其离子电导率高达4.049×10~(-3)S·cm~(-1),而电子电导率仅为1.936×10~(-8)S·cm~(-1)。利用该电解质制备的712NCM/LPSC/In-Li全固态电池在0.1C的充放电倍率下首周放电比容量高达151.3 mAh·g~(-1),且具有优良的循环稳定性。 |
其他语种文摘
|
Li_6PS_5Cl(LPSC),a sulfide solid-state electrolyte with an argyrodite structure,is one of the ideal electrolyte materials for the construction of all-solid-state lithium-ion batteries.It has good development prospects because of its high ionic conductivity(>3×10~(-3)S·cm~(-1))and good stability to lithium.In this work,LPSC was prepared by the combination of high-energy ball milling and inert atmosphere solid-phase sintering,and powder X-ray diffraction,Raman spectra,and scanning electron microscopy were used to investigate the effects of the preparation process on the structure,composition,electrical properties,and ion conductivity of LPSC.The results show that the extended ball milling time is beneficial to the amorphization and subsequent sintering of the LPSC precursor powder.The increase of the sintering temperature will promote the physical purity and electrical conductivity of the prepared LPSC electrolyte,but the high sintering temperature will lead to the decomposition of LPSC.The LPSC prepared by 8 hball milling and 500℃sintering has the highest ion/electron conductivity ratio(2.091×10~5)at room temperature,with ionic conductivity up to 4.049×10~(-3)S·cm~(-1)and electronic conductivity only 1.936×10~(-8)S·cm~(-1).The 712NCM/LPSC/ In-Li all-solid-state battery prepared with this electrolyte has a first-turn discharge specific capacity of 151.3 mAh·g~(-1)at a charge/discharge ratio of 0.1C,and has excellent cycling stability. |
来源
|
材料工程
,2022,50(2):103-110 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000264
|
关键词
|
Li_6PS_5Cl
;
固相烧结
;
离子电导率
;
电子电导率
;
电池循环
|
地址
|
中南大学冶金与环境学院, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7201678
|
参考文献 共
31
共2页
|
1.
陈龙. 全固态锂电池关键材料—固态电解质研究进展.
硅酸盐学报,2018,46(1):21-34
|
CSCD被引
31
次
|
|
|
|
2.
邱振平. 无机全固态锂离子电池界面性能研究进展.
化学学报,2015,73(10):992-1001
|
CSCD被引
14
次
|
|
|
|
3.
Janek J. A solid future for battery development.
Nature Energy,2016,1(9):1-4
|
CSCD被引
174
次
|
|
|
|
4.
Manthiram A. Lithium battery chemistries enabled by solid-state electrolytes.
Nature Reviews Materials,2017,2(4):1-16
|
CSCD被引
320
次
|
|
|
|
5.
张桥保. 硫化物固态电解质材料界面及其表征的研究进展.
物理学报,2020,69(22):159-186
|
CSCD被引
5
次
|
|
|
|
6.
周墨林. 硫化物固态电解质Li_(10)GeP_2S_(12)与锂金属间界面稳定性的改善研究.
高等学校化学学报,2020,41(8):1810-1817
|
CSCD被引
2
次
|
|
|
|
7.
Kamaya N. A lithium superionic conductor.
Nature Materials,2011,10(9):682-686
|
CSCD被引
281
次
|
|
|
|
8.
Hassoun J. A structural,spectroscopic and electrochemical study of a lithium ion conducting Li_(10)GeP_2S_(12) solid electrolyte.
Journal of Power Sources,2013,229:117-122
|
CSCD被引
6
次
|
|
|
|
9.
Seino Y. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries.
Energy &Environmental Science,2014,7(2):627-631
|
CSCD被引
77
次
|
|
|
|
10.
Chu I H. Insights into the performance limits of the Li_7P_3S_(11)superionic conductor:a combined first-principles and experimental study.
ACS Applied Materials &Interfaces,2016,8(12):7843-7853
|
CSCD被引
16
次
|
|
|
|
11.
张楠. 利用Ce_2S_3对70Li_2S-30P_2S_5玻璃陶瓷态电解质掺杂改性的研究.
高校化学工程学报,2020,34(1):200-207
|
CSCD被引
2
次
|
|
|
|
12.
Kato Y. High-power all-solid-state batteries using sulfide superionic conductors.
Nature Energy,2016,1(4):1-7
|
CSCD被引
185
次
|
|
|
|
13.
Xu R. Construction of all-solid-state batteries based on a sulfur-graphene composite and Li_(9.54)Si_(1.74) P_(1.44)S_(11.7)Cl_(0.3)solid electrolyte.
Chemistry-A European Journal,2017,23(56):13950-13956
|
CSCD被引
3
次
|
|
|
|
14.
Yu C. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li_6PS_5Cl solid-state electrolyte.
ACS Applied Materials &Interfaces,2018,10(39):33296-33306
|
CSCD被引
13
次
|
|
|
|
15.
Adeli P. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution.
Angewandte Chemie International Edition,2019,58(26):8681-8686
|
CSCD被引
35
次
|
|
|
|
16.
Deiseroth H J. Li6PS5X:a class of crystalline Li-rich solids with an unusually high Li~+ mobility.
Angewandte Chemie International Edition,2008,47(4):755-758
|
CSCD被引
56
次
|
|
|
|
17.
Kanno R. Lithium ionic conductor Thio-LISICON:the Li_2S-GeS_2-P_2S_5 system.
Journal of the Electrochemical Society,2001,148(7):A742-A746
|
CSCD被引
66
次
|
|
|
|
18.
Chen S. Sulfide solid electrolytes for allsolid-state lithium batteries:structure,conductivity,stability and application.
Energy Storage Materials,2018,14:58-74
|
CSCD被引
59
次
|
|
|
|
19.
Hayashi A. Preparation and ionic conductivity of Li_7P_3S_(11)-zglass-ceramic electrolytes.
Journal of Non-Crystalline Solids,2010,356(44):2670-2673
|
CSCD被引
13
次
|
|
|
|
20.
Ito S. A synthesis of crystalline Li_7P_3S_(11)solid electrolyte from 1,2-dimethoxyethane solvent.
Journal of Power Sources,2014,271:342-345
|
CSCD被引
11
次
|
|
|
|
|