融合字符级滑动窗口和深度残差网络的僵尸网络DGA域名检测方法
Novel Botnet DGA Domain Detection Method Based on Character Level Sliding Window and Deep Residual Network
查看参考文献17篇
文摘
|
本文提出了一种基于字符级滑动窗口的深度残差网络(Sliding Window-Depth Residual Network,SWDRN),首次将轻量级深度可分离式卷积应用于僵尸网络中DGA(Domain Generation Algorithm)域名检测. SW-DRN采用深度可分离式卷积,相比标准卷积减少了约56%的参数,增强了模型检测效率.采集两种不同来源的数据,分别命名为Real-Dataset和Gen-Dataset. SW-DRN与对照组模型在两个数据集上进行实验,实验结果表明:SW-DRN模型在DGA域名二分类任务中的F-Score评估指标上分别取得了99.23%和97.81%的成绩;并且在少样本DGA域名家族以及域名字符串易混淆DGA域名情形下多分类任务中取得不错的成绩,相比目前已有的DGA域名分类模型在总体FScore上提升了1.23%和1.01%的性能,增强了DGA域名家族之间的识别;同时还对所提出的模型在生成对抗模型产生域名进行测试,均能得到有效的识别. |
其他语种文摘
|
This paper proposed a character-level sliding window based deep residual network model SW-DRN (Sliding Window-Depth Residual Network), which was the first to apply light depthwise separable convolution to the DGA(Domain Generation Algorithm) domain name detection. In SW-DRN, the use of depthwise separable convolution reduced the number of model parameters by about 56% compared with standard convolution, which enhanced the efficiency of model detection. Collect data from two different sources, named Real-Dataset and Gen-Dataset. Finally, comparison experiments on the dataset with the proposed DGA domain name detection model by previous researchers. Experimental results on two datasets show that the proposed SW-DRN model has achieved good results of 99.23% and 97.81% on the F-Score evaluation indicator in the DGA domain name binary classification task. Compared with the existing DGA domain name classification model, the SW-DRN has made a 1.23% and 1.01% performance improvement on the F-Score, enhancing the DGA domain name family recognition. At the same time, the proposed model tests in the generative adversarial networks to generate domain names, and it can be effectively identified. |
来源
|
电子学报
,2022,50(1):250-256 【核心库】
|
DOI
|
10.12263/DZXB.20200619
|
关键词
|
域名生成算法
;
字符级向量
;
残差网络
;
深度可分离式卷积
|
地址
|
1.
重庆理工大学计算机科学与工程学院, 重庆, 400054
2.
重庆理工大学人工智能学院, 重庆, 401135
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家社会科学基金
|
文献收藏号
|
CSCD:7169578
|
参考文献 共
17
共1页
|
1.
Antonakakis M. Detecting malware domains at the upper dns hierarchy. USENIX security symposium.
Proceedings of the 20th USENIX conference on Security,2011:1-16
|
CSCD被引
1
次
|
|
|
|
2.
Yadav S. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis.
IEEE/ACM Transactions on Networking,2012,20(5):1663-1677
|
CSCD被引
15
次
|
|
|
|
3.
Antonakakis M. From throw-away traffic to bots: Detecting the rise of DGAbased malware.
Proceedings of the 21st USENIX Conference on Security Symposium,2012:491-506
|
CSCD被引
1
次
|
|
|
|
4.
Woodbridge J.
Predicting domain generation algorithms with long short-term memory networks,2020
|
CSCD被引
3
次
|
|
|
|
5.
Vinayakumar R. Evaluating deep learning approaches to characterize and classify the DGAs at scale.
Journal of Intelligent & Fuzzy Systems,2018,34(3):1265-1276
|
CSCD被引
3
次
|
|
|
|
6.
吕品. 基于双向LSTM的误植域名滥用检测方法.
电子学报,2018,46(9):2081-2086
|
CSCD被引
4
次
|
|
|
|
7.
Tran D. A LSTM based framework for handling multiclass imbalance in DGA botnet detection.
Neurocomputing,2018,275:2401-2413
|
CSCD被引
17
次
|
|
|
|
8.
Highnam K. Real-time detection of dictionary DGA network traffic using deep learning.
SN Computer Science,2021,2(2):1-17
|
CSCD被引
8
次
|
|
|
|
9.
杜鹏. 基于混合词向量深度学习模型的DGA域名检测方法.
计算机研究与发展,2020,57(2):433-446
|
CSCD被引
9
次
|
|
|
|
10.
He K M. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016:770-778
|
CSCD被引
630
次
|
|
|
|
11.
Howard A G.
MobileNets: Efficient convolutional neural networks for mobile vision applications,2017
|
CSCD被引
353
次
|
|
|
|
12.
Vinayakumar R. DBD: Deep Learning DGA-based Botnet Detection.
Deep Learning Applications for Cyber Security,2019:127-149
|
CSCD被引
2
次
|
|
|
|
13.
Yu B. Character level based detection of DGA domain names.
2018 International Joint Conference on Neural Networks (IJCNN),2018:1-8
|
CSCD被引
2
次
|
|
|
|
14.
Qiao Y C. DGA domain name classification method based on long shortterm memory with attention mechanism.
Applied Sciences,2019,9(20):4205
|
CSCD被引
10
次
|
|
|
|
15.
Anderson H S. DeepDGA: Adversarially-tuned domain generation and detection.
Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security,2016:13-21
|
CSCD被引
5
次
|
|
|
|
16.
Sidi L.
MaskDGA: A blackbox evasion technique against DGA classifiers and adversarial defenses,2020
|
CSCD被引
1
次
|
|
|
|
17.
Peck J. CharBot: A simple and effective method for evading DGA classifiers.
IEEE Access,2019,7:91759-91771
|
CSCD被引
4
次
|
|
|
|
|