用于红外激光传输的硫系玻璃光纤研究进展
Research Progress in Chalcogenide Glass Fibers for Infrared Laser Delivery
查看参考文献41篇
文摘
|
随着红外光学的不断发展,国防安全、生物医疗、先进制造等领域对红外激光传输的需求越来越迫切,基于非氧化物玻璃的红外传能光纤日益受到重视。硫系玻璃作为一种优秀的红外材料,具有透过范围广、物化性能稳定、易于成纤等特点,是制备红外传能光纤的理想材料之一。介绍了国内外有关红外激光传输用硫系光纤(包括阶跃型光纤和微结构光纤)的最新研究进展,分析了目前存在的问题,指出了下一步的发展方向。 |
其他语种文摘
|
Significance As the performance of mid-infrared lasers continues to improve,there occurs an increasing demand for their applications in laser surgery,military,materials processing,and other fields.Compared with spatial optical systems,the use of infrared fibers for laser transmission can greatly reduce the size of an optical system and improve the compactness and reliability of the whole system.For example,in the medical field,a considerable amount of laser surgery is performed using 2.94μm Er:YAG lasers.The Er:YAG laser radiation absorption is very strong because this laser wavelength is practically in the center of the maximum absorption band of cellular water.Since biological tissues contain up to 70%~90% water,the Er:YAG laser is extremely efficient for their high precision cutting and vaporization.In addition,in the military field,another important application for 2μm to 5μm short-wave mid-infrared lasers is infrared countermeasures(IRCM)or laser tactical systems.Transmitting high power infrared lasers by infrared fibers can deflect or dazzle the infrared target seeking system.This application puts a high demand on the power handling capability of the fiber(typically tens of watts).For 5--12μm long-wave mid-infrared lasers,high power CO(5.4μm)and CO_2(10.6μm) lasers can be used for laser surgery,industrial cutting,and welding applications.In addition,the transmission of laser power through optical fibers enables remote operation.Due to the characteristics of wide infrared transmission,good physical and chemical stabilities,and easily fiberized performances,chalcogenide glass is one of the best materials for infrared laser power delivery fiber.Therefore,as an important infrared fiber,the fabrication and application of chalcogenide glass fiber have been paid much attention at home and abroad.This review introduces the research progresses of domestic and foreign research groups in the preparation and application of chalcogenide fibers(including the step-index fibers and micro-structured fibers)for infrared laser power delivery.Progress Step-index chalcogenide glass fibers are the earliest and most mature chalcogenide fibers.For 2--5μm short-wave mid-infrared lasers,researchers first studied chalcogenide multi-mode fibers.In 1998,the US Naval Laboratory reported the successful transmission of a 2.94μm wavelength medical free electron laser(MFEL)using an As_(40)S_(60) multi-mode fiber.This result showed that laser surgery should be possible using a chalcogenide multimode fiber.Both CW and pulsed laser transmissions through chalcogenide multi-mode fibers were then subsequently reported.With the continuous development of mid-infrared lasers,while large-core multi-mode fibers can transmit higher power lasers,laser transmission quality and transmission modes still had to be considered,which require the development of small-core single-mode fibers.In 2018,the University of Central Florida examined the potential of chalcogenide fibers to handle high power mid-infrared lasers.The AR-coated As_(40)S_(60) single-mode fiber enables the delivery of 10.3Wlaser at 2.053μm (Fig.1).For 5--12μm long-wave mid-infrared lasers,a multi-hundred-watt CO laser has been successfully delivered through chalcogenide glass fibers under gas cooling conditions(Fig.2).And Te-based chalcogenide fibers can deliver a CO_2 laser with tens of watts.The laser transmission of different chalcogenide step-index fibers has been summarized(Tabled 1).It can be seen that chalcogenide step-index fibers have made a great progress in midinfrared laser transmission.At present,a multi-mode step-index fiber can achieve multi-hundred-watt laser transmission,while a single-mode step-index fiber can basically meet the demand for laser transmission within 10 W,and has been experimentally demonstrated in the fields of laser surgery and laser processing. |
来源
|
中国激光
,2022,49(1):0101007 【核心库】
|
DOI
|
10.3788/CJL202249.0101007
|
关键词
|
激光光学
;
红外光纤
;
硫系玻璃
;
负曲率光纤
;
激光传输
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100045
3.
光电信息控制和安全技术重点实验室, 天津, 300308
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0258-7025 |
学科
|
物理学;化学工业 |
基金
|
国家自然科学基金
;
中科院创新交叉团队资助
|
文献收藏号
|
CSCD:7149153
|
参考文献 共
41
共3页
|
1.
Borisova Z U.
Glassy semiconductors,1981:5-35
|
CSCD被引
1
次
|
|
|
|
2.
戴世勋. 基于硫系玻璃光纤的中红外超连续谱产生研究进展.
激光与光电子学进展,2020,57(7):071603
|
CSCD被引
9
次
|
|
|
|
3.
Nguyen V Q. Fabrication of arsenic selenide optical fiber with low hydrogen impurities.
Journal of the American Ceramic Society,2004,85(11):2849-2851
|
CSCD被引
5
次
|
|
|
|
4.
Kapany N S. Recent developments in infrared fiber optics.
Infrared Physics,1965,5(2):69-80
|
CSCD被引
8
次
|
|
|
|
5.
Sanghera J S. IR fiber optics for biomedical applications.
Proceedings of SPIE. 3907,2000:461-467
|
CSCD被引
1
次
|
|
|
|
6.
Papagiakoumou E. Pulsed infrared radiation transmission through chalcogenide glass fibers.
Optics Communications,2007,276(1):80-86
|
CSCD被引
2
次
|
|
|
|
7.
Sanghera J S. Active and passive chalcogenide glass optical fibers for IR applications:a review.
Journal of Non-Crystalline Solids,1999,256/257:6-16
|
CSCD被引
27
次
|
|
|
|
8.
Sincore A. High power singlemode delivery of mid-infrared sources through chalcogenide fiber.
Optics Express,2018,26(6):7313-7323
|
CSCD被引
6
次
|
|
|
|
9.
Watanabe S. 60-W CO laser power transmission through As-S glass fibers.
Conference on Lasers and Electro-Optics,May 21-24,1985,Baltimore,Maryland,1985:FP6
|
CSCD被引
1
次
|
|
|
|
10.
Sato S. Multihundred-watt CO laser power delivery through chalcogenide glass fibers.
Applied Physics Letters,1993,62(7):669-671
|
CSCD被引
6
次
|
|
|
|
11.
Inagawa I. Transmission-loss spectra of chalcohalide Se-Te-I glass fibers and its delivery of CO_2 Laser power.
Japanese Journal of Applied Physics,1991,30(1):2846-2849
|
CSCD被引
1
次
|
|
|
|
12.
Nishii J. Recent advances and trends in chalcogenide glass fiber technology:a review.
Journal of Non-Crystalline Solids,1992,140:199-208
|
CSCD被引
10
次
|
|
|
|
13.
Busse L E. Midinfrared power delivery through chalcogenide glass-clad optical fibers.
Proceedings of SPIE. 2714,1996:211-221
|
CSCD被引
1
次
|
|
|
|
14.
Su J X. Fabrication and bending strength analysis of low-loss Ge_(15)As_(25)Se_(40) Te_(20) chalcogenide glass fiber:apotential mid-infrared laser transmission medium.
Optical Materials Express,2019,9(7):2859-2869
|
CSCD被引
4
次
|
|
|
|
15.
Le Person J. Light guidance in new chalcogenide holey fibres from GeGaSbS glass.
Materials Research Bulletin,2006,41(7):1303-1309
|
CSCD被引
5
次
|
|
|
|
16.
Troles J. Chalcogenide photonic crystal fibers for near and middle infrared applications.
2007 9th International Conference on Transparent Optical Networks,July 1-5,2007, Rome,Italy,2007:297-300
|
CSCD被引
1
次
|
|
|
|
17.
Ren H. All-solid mid-infrared chalcogenide photonic crystal fiber with ultralarge mode area.
Optics Letters,2019,44(22):5553-5556
|
CSCD被引
3
次
|
|
|
|
18.
Feng X. Few-moded ultralarge mode area chalcogenide photonic crystal fiber for midinfrared high power applications.
Optics Express,2020,28(11):16658-16672
|
CSCD被引
4
次
|
|
|
|
19.
Duguay M A. Antiresonant reflecting optical waveguides in SiO_2-Si multilayer structures.
Applied Physics Letters,1986,49(1):13-15
|
CSCD被引
17
次
|
|
|
|
20.
Knight J C. Photonic crystal fibres.
Nature,2003,424(6950):847-851
|
CSCD被引
121
次
|
|
|
|
|