帮助 关于我们

返回检索结果

基于双编码的重叠社团检测多目标优化方法
A Dual Representation-Based Multi-Objective Evolutionary Algorithm for Overlapping Community Detection

查看参考文献22篇

文摘 近年来,多目标进化方法已被广泛应用于重叠社团检测问题并取得了较好的社团划分性能.如何设计合适的个体编码以及进化策略是提高基于多目标进化重叠社团检测算法性能的重要因素.为此,本文设计了一种双编码表示方法对非重叠社团结构和重叠点分别进行编码,能够有效解码得到重叠社团结构.在双编码表示的基础上,本文提出了一种基于双编码的重叠社团检测多目标优化方法(DRMOEA).在DRMOEA中,为了获得好的初始个体并提高算法检测性能,本文提出了一种基于社团边界点的初始化策略.除此之外,针对双编码中的重叠点编码部分,本文提出了基于精英个体边界点的交叉策略,该策略利用社团边界信息引导种群向好的方向进化,从而有效提高了算法的检测性能.最后,在9个真实世界网络上的实验结果表明DRMOEA算法优于其他5个代表性重叠社团检测算法.
其他语种文摘 In recent years, the multi-objective evolutionary methods have been widely used for solving overlapping community detection problem and have achieved good community division performance. To design appropriate individual encoding and evolution strategies is important to improve the performance of multi-objective overlapping community detection evolutionary algorithm. To this end, a dual representation method is designed to encode the non-overlapping community structures and overlapping nodes respectively, which can effectively obtain the overlapping community structures. On the basis of the dual representation, this paper proposes a dual representation-based multi-objective evolutionary algorithm for overlapping community detection (DRMOEA). In DRMOEA, an initialization strategy based on community boundary nodes is suggested to obtain good initial individuals,with the aim to improve the detection performance of the algorithm. In addition, for the overlapping part of the dual-representation, this paper proposes a crossover strategy according to the boundary nodes of elite individuals, which uses community boundary information to guide the evolution of the population towards a better direction. Finally, the experimental results on nine real-world networks show that the proposed DRMOEA is better than five representative baseline overlapping community detection algorithms.
来源 电子学报 ,2021,49(11):2101-2107 【核心库】
DOI 10.12263/DZXB.20201094
关键词 复杂网络 ; 重叠社团检测 ; 双编码 ; 多目标优化
地址

安徽大学计算机科学与技术学院, 计算智能与信号处理教育部重点实验室, 安徽, 合肥, 230601

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  安徽省自然科学基金 ;  安徽省高校省级自然科学研究项目
文献收藏号 CSCD:7109389

参考文献 共 22 共2页

1.  Pizzuti C. Algorithms and tools for proteinprotein interaction networks clustering, with a special focus on population-based stochastic methods. Bioinformatics,2014,30(10):1343-1352 CSCD被引 2    
2.  Harakawa R. Accurate and efficient extraction of hierarchical structure of web communities for web video retrieval. ITE Transactions on Media Technology & Applications,2016,4(1):49-59 CSCD被引 1    
3.  Jie Y. Community detection in complex networks: Algorithms and analysis. International Conference on Trustworthy Computing and Services,2014:238-244 CSCD被引 1    
4.  Ahn Y Y. Link communities reveal multiscale complexity in networks. Nature,2010,466(7307):761-764 CSCD被引 168    
5.  Palla G. Uncovering the overlapping community structure of complex networks in nature and society. Nature,2005,435(7043):814-818 CSCD被引 467    
6.  於志勇. 基于影响力与种子扩展的重叠社区发现. 电子学报,2019,47(1):153-160 CSCD被引 5    
7.  Sun H. CenLP: A centrality-based label propagation algorithm for community detection in networks. Physica A: Statistical Mechanics and Its Applications,2015,436:767-780 CSCD被引 12    
8.  Sun P G. Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks. Information Sciences,2011,181(6):1060-1071 CSCD被引 14    
9.  公茂果. 进化多目标优化算法研究. 软件学报,2009,20(2):271-289 CSCD被引 250    
10.  巩敦卫. 基于集合的高维多目标优化问题的进化算法. 电子学报,2014,42(1):77-83 CSCD被引 18    
11.  Liu J. Separated and overlapping community detection in complex networks using multiobjective evolutionary algorithms. IEEE Congress on Evolutionary Computation,2010:1-7 CSCD被引 1    
12.  Liu C. A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Transactions on Cybernetics,2014,44(12):2274-2287 CSCD被引 10    
13.  Li Y. Overlapping community detection through an improved multi-objective quantum-behaved particle swarm optimization. Journal of Heuristics,2015,21(4):549-575 CSCD被引 3    
14.  Wen X. A maximal clique based multiobjective evolutionary algorithm for overlapping community detection. IEEE Transactions on Evolutionary Computation,2017,21(3):363-377 CSCD被引 5    
15.  Zhang L. A mixed representationbased multiobjective evolutionary algorithm for overlapping community detection. IEEE Transactions on Cybernetics,2017,47(9):2703-2716 CSCD被引 4    
16.  Gema B O. A multi-objective genetic algorithm for overlapping community detection based on edge encoding. Information Sciences,2018,462:290-314 CSCD被引 2    
17.  Tian Y. An evolutionary multiobjective optimization based fuzzy method for overlapping community detection. IEEE Transactions on Fuzzy Systems,2020,28(11):2841-2855 CSCD被引 3    
18.  Gong M. Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Physica A: Statistical Mechanics and Its Applications,2012,391(15):4050-4060 CSCD被引 12    
19.  Wei Y C. Ratio cut partitioning for hierarchical designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1991,10(7):911-921 CSCD被引 12    
20.  Gong M. Memetic algorithm for community detection in networks. Physical Review E,2011,84(5):056101 CSCD被引 7    
引证文献 1

1 邵豪 基于重要性采样的超图网络高效表示方法 软件学报,2024,35(9):4390-4407
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号