帮助 关于我们

返回检索结果

可展开空间光学望远镜技术发展及展望
Development and prospects of deployable space optical telescope technology

查看参考文献86篇

胡斌 1,2   李创 1 *   相萌 2   李亮亮 2   戴昊斌 2   姚佩 2   李旭阳 1  
文摘 为了获得更高的角分辨率,空间光学望远镜的口径越来越大,口径超过4 m的空间望远镜将难以突破现有运载火箭整流罩有效包络的限制。另一方面,在研制周期及成本等方面拥有较大优势的微纳光学遥感卫星也对提高空间分辨率和集光面积有广泛的需求,需要在较小的发射体积里容纳下较大的光机系统,以降低发射成本。可展开空间光学望远镜将成为解决发射尺寸受限的可行方式。从大口径空间天文望远镜、分块式可展开对地观测望远镜和光轴方向可展开微纳卫星光学望远镜等方面对国内外可展开空间光学望远镜的研究现状进行了综述。对可展开空间光学望远镜涉及到的一些关键技术和发展趋势进行了阐述和归纳。
其他语种文摘 In order to obtain higher angular resolution, the aperture of the space optical telescope is getting larger and larger, and the space telescope with aperture of more than four meters will be difficult to break through the limitation of the effective envelope of the fairing of the existing launch vehicle. On the other hand, the micro-nano optical remote sensing satellite, which has great advantages in terms of development cycle and cost, also has extensive requirements for improving spatial resolution and light gathering area, requiring a smaller launch volume to accommodate a large opto-mechanical system to reduce the launch cost. Deployable space telescopes will be a feasible solution to overcome the limitations of launch size. The research status of deployable space telescopes was reviewed from the aspects of large aperture space astronomical telescopes, segmented mirror deployable telescopes for earth observation and micro-nano satellite optical telescopes deploying along optical axis. Some key technologies and development trends involved in deployable space telescopes were described and summarized.
来源 红外与激光工程 ,2021,50(11):20210199 【核心库】
DOI 10.3788/IRLA20210199
关键词 可展开机构 ; 高分辨率 ; 空间光学望远镜 ; 大口径 ; 分块式主镜
地址

1. 中国科学院西安光学精密机械研究所, 陕西, 西安, 710119  

2. 中国科学院大学, 北京, 100049

语种 中文
文献类型 综述型
ISSN 1007-2276
学科 机械、仪表工业;自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:7105592

参考文献 共 86 共5页

1.  Lillie C F. Large deployable telescopes for future space observatories. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II. 5899,2005:58990D CSCD被引 1    
2.  Zhang Xuejun. Applications and development of ultra large aperture space optical remote sensor. Optics and Precision Engineering. (in Chinese),2016,24(11):2613-2626 CSCD被引 4    
3.  Greenhouse M A. The JWST science instrument payload: mission context and status. UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VI. 8860,2013:886004 CSCD被引 1    
4.  Sabelhaus P A. An overview of the James Webb Space Telescope (JWST) project. Optical, Infrared, and Millimeter Space Telescopes. 5487,2004:550-563 CSCD被引 2    
5.  Clampin M. Status of the James Webb space telescope observatory. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442,2012:84422A CSCD被引 1    
6.  Reynolds P. Design and development of the primary and secondary mirror deployment systems for the cryogenic JWST. 37th Aerospace Mechanisms Symposium,2004:29-44 CSCD被引 1    
7.  Acton D S. Wavefront sensing and controls for the James Webb space telescope. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave. 8442,2012:84422H CSCD被引 1    
8.  Kimble R A. Completion of the JWST spacecraft/sunshield and telescope/instrument elements. American Astronomical Society Meeting. 235,2020:372-310 CSCD被引 1    
9.  Clampin M. Overview of the James Webb space telescope observatory. UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V. 8146,2011:814605 CSCD被引 1    
10.  Arenberg J. Status of the JWST sunshield and spacecraft. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. 9904,2016:990405 CSCD被引 1    
11.  The LUVOIR Team. The LUVOIR mission concept study final report,2019 CSCD被引 2    
12.  Park S. LUVOIR thermal architecture overview and enabling technologies for picometerscale WFE stability. 2019 IEEE Aerospace Conference,2019:1-13 CSCD被引 2    
13.  Hylan J E. The large UV/Optical/lnfrared surveyor (LUVOIR): decadal mission concept study update. 2019 IEEE Aerospace Conference,2019:1-15 CSCD被引 2    
14.  Allen M R. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration. Journal of Astronomical Telescopes, Instruments, and Systems,2016,2(2):029001 CSCD被引 2    
15.  Watson J J. Correcting surface figure error in imaging satellites using a deformable mirror,2013 CSCD被引 1    
16.  Mesrine M. High resolution earth observation from geostationary orbit by optical aperture synthesys. International Conference on Space Optics. 10567,2006:105670B CSCD被引 1    
17.  Aguirre M. ESA activities related to high resolution imaging from GEO. HR GEO User Consultation Workshop,2010 CSCD被引 1    
18.  Bello U D. ESA studies on HR imaging from geostationary satellites. 2nd GEO-HR User Consultation Workshop,2013 CSCD被引 1    
19.  Decourt R. Hoasis: Surveillance a haute resolution depuis l ' orbite geostationnaire,2013 CSCD被引 1    
20.  Behar-Lafenetre S. Active optics in deployable systems for future EO and science missions,2020 CSCD被引 1    
引证文献 5

1 薛明德 大型空间结构热-动力学耦合分析方法综述 力学学报,2022,54(9):2361-2376
CSCD被引 2

2 赵佳晨 振动对光学合成孔径的成像影响 光学学报,2022,42(22):2211001
CSCD被引 3

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号