帮助 关于我们

返回检索结果

基于多源交配选择策略的重组算子与多目标优化研究
Research on Reproduction Operator and Multi-objective Optimization Based on Multi-source Mating Selection Strategy

查看参考文献16篇

张屹 1   陆逸舟 1   王帅 1   陆曈曈 2  
文摘 本文提出了一种基于多源交配选择的多目标进化算法(Multi-source Mating Selection based Multi-objective Evolutionary Algorithms, MMSEA).在MMSEA算法中,谱聚类被用来挖掘种群规则特性,基于所获得的种群结构化信息设计了一种多源交配选择重组算子来引导算法搜索,通过为每个个体设置多个交配选择源,在利用相似个体重组加速算法收敛的同时较好地保持了种群的多样性.实验结果表明,所提重组算子可以有效提升算法性能,将MMSEA与多种主流的多目标进化算法进行实验对比研究与参数灵敏度分析的结果表明,MMSEA在求解具有复杂特性的典型多目标优化问题测试集时表现出较强的竞争力.
其他语种文摘 This work proposes a multi-source mating selection based multi-objective evolutionary algorithm(MMSEA). In MMSEA, the spectral clustering algorithm is used to exploit the property of the multi-objective optimization problems. Based on the obtained population structure information, a multi-source mating selection strategy is designed to guide the algorithm search. The convergence of the algorithm is accelerated and the diversity of the population is maintained by setting multiple mating selections for each individual and using similar-based reproduction. The experimental results show that the proposed reproduction operator can effectively improve the performance of the algorithm. MMSEA is experimentally compared with variety of mainstream multi-objective evolutionary algorithms, and parameter sensitivity is also performed. In these experiments, MMSEA demonstrates strong competitiveness over the other approaches in solving typical multi-objective optimization problems with complex characteristics.
来源 电子学报 ,2021,49(9):1754-1760 【核心库】
DOI 10.12263/DZXB.20200397
关键词 聚类学习 ; 进化算法 ; 交配选择 ; 多目标优化
地址

1. 常州大学机械与轨道交通学院, 江苏, 常州, 213164  

2. 常州大学商学院, 江苏, 常州, 213164

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  科技部重点研发计划项目
文献收藏号 CSCD:7077350

参考文献 共 16 共1页

1.  Zhou A M. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation,2011,1(1):32-49 CSCD被引 73    
2.  Zhang Q F. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation,2008,12(1):41-63 CSCD被引 71    
3.  Zhang H. A self-organizing multiobjective evolutionary algorithm. IEEE Transactions on Evolutionary Computation,2016,20(5):792-806 CSCD被引 11    
4.  Sun J Y. Learning from a stream of nonstationary and dependent data in multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation,2019,23(4):541-555 CSCD被引 1    
5.  李欣. 基于聚类的多目标演化算法交配限制策略研究,2019 CSCD被引 2    
6.  Wang S. A spectral clusteringbased multi-source mating selection strategy in evolutionary multi-objective optimization. IEEE Access,2019,7:131851-131864 CSCD被引 2    
7.  Luxburg U. A tutorial on spectral clustering. Statistics and Computing,2007,17(4):395-416 CSCD被引 410    
8.  Deb K. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197 CSCD被引 3311    
9.  De Jong K. Evolutionary computation: A unified approach. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion,2016:185-199 CSCD被引 2    
10.  Gu F. A multiobjective evolutionary algorithm using dynamic weight design method. International Journal of Innovative Computing, Information and Control,2012,8(5(B)):3677-3688 CSCD被引 3    
11.  Cheng R. A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling. IEEE Transactions on Evolutionary Computation,2015,19(6):838-856 CSCD被引 16    
12.  Li H. Biased multiobjective optimization and decomposition algorithm. IEEE Transactions on Cybernetics,2017,47(1):52-66 CSCD被引 5    
13.  Li H. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation,2009,13(2):284-302 CSCD被引 165    
14.  李玲俐. 谱聚类算法及其应用综述. 软件导刊,2016,15(7):54-56 CSCD被引 2    
15.  陶莹. K均值聚类算法的研究与优化. 计算机技术与发展,2018,28(6):90-92 CSCD被引 21    
16.  张屹. 基于模糊C均值聚类的锦标赛选择机制与多目标优化研究. 电子学报,2017,45(11):2677-2684 CSCD被引 4    
引证文献 1

1 王旭 基于多指标精英个体博弈机制的多目标优化算法 系统仿真学报,2023,35(3):494-514
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号