帮助 关于我们

返回检索结果

两种典型高熵合金冲击释能及毁伤特性研究
IMPACT ENERGY RELEASE AND DAMAGE CHARACTERISTICS OF TWO HIGH-ENTROPY ALLOYS

查看参考文献32篇

侯先苇 1   熊玮 1   陈海华 1   张先锋 1   汪海英 2   戴兰宏 3  
文摘 为研究FeNiMoW和FeNiCoCr两种典型高熵合金材料的冲击释能规律,利用Φ14.5 mm弹道枪发射装置和准密闭试验容器系统开展了两种典型高熵合金破片在不同速度下冲击释能效应试验.进一步,利用该试验平台开展两种高熵合金破片侵彻多层目标的毁伤特性研究.通过改变准密闭试验容器前置钢靶厚度,研究了两种高熵合金破片对后续多层靶板的侵彻毁伤规律.研究发现: FeNiMoW和FeNiCoCr高熵合金破片分别在1356 m/s和1217 m/s出现能量释放现象.低于该撞击速度未发生化学反应.撞击速度对两种高熵合金破片释能有显著的影响,随着速度的增加,两种高熵合金破片冲击释能反应加剧,超压峰值上升加快.在1600 m/s左右的撞击速度下,随着试验容器前置钢靶厚度从1 mm增加至5 mm, FeNiMoW破片超压峰值整体上呈上升趋势, FeNiCoCr破片超压峰值呈下降趋势.在两种高熵合金破片侵彻多层靶标过程中,其释能反应程度的降低对破片穿孔能力的增强有一定贡献,而容器前置钢靶厚度的进一步增大将降低破片对后续多层铝靶的穿孔毁伤能力.另一方面,随着前置钢靶厚度的增大,破片对第一层铝靶的毁伤面积先增大后减小.
其他语种文摘 In order to explore the impact energy release characteristics regularities of two typical high-entropy alloy materials, using the Φ14.5 mm ballistic gun launcher, the quasi-sealed test chamber system, two typical high-entropy alloy fragments, the FeNiMoW and the FeNiCoCr, were carried out the release energy effect tests at different impact velocities. Furthermore, the test platform was used to study the penetration and damage effect of two high-entropy alloy fragments to multi-layered targets, which were placed to the bottom of the test chamber. By changing the thickness of the steel target fixed in front of the test chamber, the impact release energy characteristics and damage regularities of two high-entropy alloy fragments to the subsequent multi-layered targets were studied. The study found that FeNiMoW and FeNiCoCr high-entropy alloy fragments began to react releasing chemical energy at around 1356 m/s and 1217 m/s, respectively. There was no chemical reaction reacted below this velocity. It was obvious that the impact velocities had a great influence to the release energy of the two high-entropy alloy fragments. As the velocity increased, the energy release response of the fragments became more intense, the peak overpressure showed a rising trend and the rising velocity became faster. As the thickness of the front steel target increased from 1 mm to 5 mm at an impact velocity of approximately 1600 m/s, it could be seen that the peak overpressures of FeNiMoW fragments showed a rise trend, and the peak overpressures of FeNiCoCr fragments showed a downward trend. In the process of the fragments perforating the front steel target and penetrating the multi-layered aluminum targets, the reduction of the release energy reaction degree will contribute to the enhancement of the penetration effect of the fragments, and the more increasing thickness of the front steel target will reduce the penetration and damage effect of the fragments to the multi-layered aluminum targets. On the other hand, as the thickness of the front steel target increases, the area of the first layer of aluminum target damaged by the fragments first increases and then decreases.
来源 力学学报 ,2021,53(9):2528-2540 【核心库】
DOI 10.6052/0459-1879-21-327
关键词 准密闭反应容器 ; 冲击释能特性 ; 多层靶 ; 毁伤特性
地址

1. 南京理工大学机械工程学院, 南京, 210094  

2. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190  

3. 中国科学院大学工程科学学院, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 力学
基金 国家自然科学基金 ;  中央高校基本科研业务费专项资金 ;  中国空气动力研究与发展中心超高速碰撞研究中心开放基金
文献收藏号 CSCD:7071940

参考文献 共 32 共2页

1.  吕昭平. 高熵合金的变形行为及强韧化. 金属学报,2018,54(11):1553-1566 CSCD被引 55    
2.  张勇. 先进高熵合金技术,2017 CSCD被引 4    
3.  Miracle D B. A critical review of high-entropy alloys and related concepts. Acta Materialia,2017,122:448-511 CSCD被引 564    
4.  Chou H P. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Materials Science and Engineering:B,2009,163(3):184-189 CSCD被引 37    
5.  Tsai K Y. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia,2013,61(13):4887-4897 CSCD被引 161    
6.  Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications. Science,2014,345(6201):1153-1158 CSCD被引 495    
7.  杨铭. 高熵非晶合金研究进展. 中国科学:物理学力学天文学,2020,50(6):21-33 CSCD被引 6    
8.  温晓灿. 高熵合金中的第二相强韧化. 中国材料进展,2019,38(3):242-250 CSCD被引 10    
9.  Zhang W R. Science and technology in high-entropy alloys. Science China Materials,2018,61(1):2-22 CSCD被引 172    
10.  张勇. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G辑:物理学力学天文学),2008(4):439-448 CSCD被引 6    
11.  李建国. 高熵合金的力学性能及变形行为研究进展. 力学学报,2020,52(2):333-359 CSCD被引 28    
12.  Zhang Z. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Materials & Design,2017,133:435-443 CSCD被引 31    
13.  张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究.[硕士论文],2017 CSCD被引 1    
14.  王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究.[硕士论文],2018 CSCD被引 1    
15.  李甲. 高熵合金强韧化理论建模与模拟研究进展. 固体力学学报,2020,41(2):93-108 CSCD被引 4    
16.  Chu C. Microstructure and mechanical behavior of FeNiCoCr and FeNiCoCrMn high-entropy alloys fabricated by powder metallurgy. Acta Metallurgica Sinica (English Letters),2021,34(4):445-454 CSCD被引 3    
17.  Xu J. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation. Journal of Materials Science & Technology,2021,82:207-213 CSCD被引 4    
18.  Wu P. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strengthductility synergy. Corrosion Science,2021,183:109341 CSCD被引 11    
19.  Lin W T. Highly pressurized helium nanobubbles promote stacking-fault-mediated deformation in FeNiCoCr high-entropy alloy. Acta Materialia,2021,210:116843 CSCD被引 5    
20.  Zhang T W. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling. International Journal of Plasticity,2020,124:226-246 CSCD被引 34    
引证文献 9

1 鄢阿敏 高熵合金药型罩射流成型与稳定性 力学学报,2022,54(8):2119-2130
CSCD被引 4

2 陈海华 W_(25)Fe_(25)Ni_(25)Mo_(25)高熵合金高速侵彻细观结构演化特性 力学学报,2022,54(8):2140-2151
CSCD被引 1

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号