高超声速MHD球头激波脱体距离理论求解
THEORETICAL ANALYSIS ON HYPERSONIC MHD SHOCK STAND-OFF DISTANCE OF BLUNT BODY
查看参考文献31篇
文摘
|
高超声速飞行器强激波后高温气体形成具有导电性的等离子体流场,电离气体为磁场应用提供了直接工作环境,磁流体流动控制技术利用外加磁场影响激波后的离子或电子运动规律,这可以有效改善高超声速飞行器气动特性.激波脱体距离作为高超声速磁流体流动控制较为直观的气动现象,受到研究者重点关注;磁场添加后激波脱体距离发生变化,其变化幅度直接反映磁控效果,然而基于高超声速磁流体流动控制的相关理论模型较少,需要进一步发展.本文基于低磁雷诺数假设和偶极子磁场分布的条件,通过对连续方程沿径向积分以及对动量方程采用分离变量的方法,推导了高超声速磁流体流动控制下的球头激波脱体距离解析表达式.理论分析结果表明,激波脱体距离随着磁相互作用系数的增加而变大;随着来流速度的增加,磁相互作用系数变为影响激波脱体距离大小的主要因素.本文理论模型可以达到快速评估磁控效果的目的,对高超声速磁流体流动控制实验方案设计和结果分析具有一定的指导意义. |
其他语种文摘
|
High speed and shock compression behind the bow shock of an aircraft head result in very high temperature, which would subsequently lead to a conductivity plasma flowfield around the vehicle. The plasma gas provides a direct working environment for the application of magnetic field. The magnetohydrodynamic (MHD) flow control, which uses the magnetic field to alter the trajectory of ions or electrons, can improve the aerodynamic characteristics of hypersonic vehicles effectively. As an intuitive aerodynamic phenomenon in the field of hypersonic MHD flow control, shock standoff distance has attracted close attention from researchers. Under the influence of the applied magnetic field, the shock stand-off distance will change with it, of which the value can directly reflect the effect of the MHD flow control. However, the relevant theoretical models are still limited, and further development in this field is consequently needed. Focusing on dealing with this problem, MHD hypersonic shock stand-off distance of the spherical model is theoretically studied in this paper. By means of radially integrating the continuity equation and applying mathematical method of variable separation to the momentum equation, the analytical expression of MHD shock stand-off distance is obtained. The theoretical analysis was performed under the assumption of low magnetic Reynolds number, and the common-used dipole distribution of magnetic field as applied. The results show that the MHD stand-off distance of shock increases with the increase of magnetic interaction parameter. Moreover, the regularity can be found that as the speed of inflow becomes higher, magnetic interaction parameter can be viewed as the primary impact factor of shock stand-off distance under hypersonic condition. The theoretical model in this work can rapidly evaluate the effect of MHD control, and it can provide theoretical guidance to the design of experiment scheme and the analysis of results. |
来源
|
力学学报
,2021,53(9):2493-2500 【核心库】
|
DOI
|
10.6052/0459-1879-21-127
|
关键词
|
高超声速
;
磁流体动力学
;
激波脱体距离
;
流动控制
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国科学院青年创新促进会项目
|
文献收藏号
|
CSCD:7071937
|
参考文献 共
31
共2页
|
1.
丁明松. 电导率模拟对高超声速MHD控制影响.
航空学报,2019,40(11):123009
|
CSCD被引
6
次
|
|
|
|
2.
李益文. 磁流体动力学在航空工程中的应用与展望.
力学进展,2017,47(1):452-502
|
CSCD被引
6
次
|
|
|
|
3.
李开.
高温真实气体条件下的磁控热防护机理研究.[博士论文],2017
|
CSCD被引
1
次
|
|
|
|
4.
罗凯. 基于高温气体效应的磁流体流动控制研究进展.
力学学报,2021,53(6):1515-1531
|
CSCD被引
3
次
|
|
|
|
5.
Ziemer R W. Experimental investigation in magneto-aerodynamics.
ARS Journal,1959,29(9):642-647
|
CSCD被引
3
次
|
|
|
|
6.
Schramm J M. Study of MHD effects in the high-enthalpy shock tunnel Gottingen (HEG) using a 30T-pulsed magnet system.
31st International Symposium on Shock Waves,2017
|
CSCD被引
2
次
|
|
|
|
7.
Gildfind D E.
Expansion tube magnetohydrodynamic experiments with argon test gas. AIAA Paper 2018-3754,2018
|
CSCD被引
2
次
|
|
|
|
8.
Seemann G R. Observations concerning magnetoaerodynamic drag and shock standoff distance.
Proceedings of the National Academy of Sciences of the United States of America,1966,55(3):457-465
|
CSCD被引
1
次
|
|
|
|
9.
Chang C F. Theoretical and experimental studies of magneto-aerodynamic drag and shock standoff distance.
NASA-CR-70315,1966
|
CSCD被引
1
次
|
|
|
|
10.
Kawamura M. Experiment on drag enhancement for a blunt body with electrodynamic heat shield.
Journal of Spacecraft and Rockets,2009,46(6):1171-1177
|
CSCD被引
3
次
|
|
|
|
11.
Smith D R.
Magnetohydrodynamic drag force measurements in an expansion tube. AIAA Paper 2018-3755,2018
|
CSCD被引
2
次
|
|
|
|
12.
Smith D R. Magnetohydrodynamic drag measurements in an expansion tunnel with argon test gas.
AIAA Journal,2020,58(10):4495-4504
|
CSCD被引
2
次
|
|
|
|
13.
Gulhan A. Experimental verification of heatflux mitigation by electromagnetic fields in partially-ionized-argon flows.
Journal of Spacecraft and Rockets,2009,46(2):274-283
|
CSCD被引
9
次
|
|
|
|
14.
Brio M. An upwind differencing scheme for the equations of ideal magnetohydrodynamics.
Journal of Computational Physics,1988,75(2):400-422
|
CSCD被引
21
次
|
|
|
|
15.
Augustinus J.
Numerical solutions of the eight-wave structure ideal MHD equations by modified Runge-Kutta scheme with TVD. AIAA Paper 1997-2398,1997
|
CSCD被引
2
次
|
|
|
|
16.
Harada S.
Development of a modified Runge-Kutta scheme with TVD limiters for the ideal 1-D MHD equations. AIAA Paper 1997-2090,1997
|
CSCD被引
2
次
|
|
|
|
17.
Damevin H M.
Numerical magnetogasdynamics simulations of hypersonic, chemically reacting flows. AIAA Paper 2001-2746,2001
|
CSCD被引
2
次
|
|
|
|
18.
Zha G. An improved low diffusion E-CUSP upwind scheme.
Computers & Fluids,2011,48(1):214-220
|
CSCD被引
2
次
|
|
|
|
19.
田正雨.
高超声速流动的磁流体力学控制数值模拟研究.[博士论文],2008
|
CSCD被引
3
次
|
|
|
|
20.
Bush W B. Magnetohydrodynamic-hypersonic flow past a blunt body.
Journal of the Aerospace Sciences,1958,25(11):685-690
|
CSCD被引
4
次
|
|
|
|
|