结合扩展多属性剖面与快速局部RX算法的高光谱异常目标检测
Hyperspectral Abnormal Target Detection Based on Extended Multi-attribute Profile and Fast Local RX Algorithm
查看参考文献22篇
文摘
|
为进一步提高高光谱异常目标检测的速度与精度,提出一种基于扩展多属性剖面和改进的Reed-Xiaoli算法相结合的快速异常目标检测方法。通过数学形态学变换从高光谱图像中提取扩展多属性剖面,同时提出一种快速局部Reed-Xiaoli算法,利用矩阵求逆引理迭代更新协方差矩阵的逆,从而降低马氏距离的计算复杂度。将扩展多属性剖面与快速局部Reed-Xiaoli算法相结合,充分利用高光谱图像的光谱信息和空间信息,有效提高探测速度与精度。在3个不同的数据集上与其他经典异常目标检测方法进行比较,实验结果表明,所提算法AUC值分别为0.996 7、0.985 6、0.981 6,运算时间分别为21.218 1 s、15.192 8 s、32.337 9 s。该方法在检测精度和速度上都有明显的优势,具有良好的实用价值。 |
其他语种文摘
|
In order to further improve the speed and accuracy of hyperspectral abnormal target detection,a fast anomaly target detection method based on extended multi-attribute profiles and improved Reed-Xiaoli is proposed. Extended multi-attribute Profiles are extracted from the original hyperspectral images by mathematical morphological transformations. Moreover,a novel fast local Reed-Xiao algorithm is also proposed. Iteratively update inverse matrix of covariance using matrix inverse lemma,thereby reducing the computational complexity of the Mahalanobis distance. The combination of extended multi-attribute profiles and fast local Reed-Xiaoli detector effectively utilizes the spectral information and spatial information of hyperspectral images,it greatly improves the detection accuracy and reduce the running time. Experimental results on three real data sets show the AUC value of the algorithm in this paper is 0.996 7,0.985 6 and 0.981 6 respectively. The operation time is 21.218 1 s,15.192 8 s and 32.337 9 s respectively. The proposed method has obvious advantages in detection accuracy and speed,and has good practical value. |
来源
|
光子学报
,2021,50(9):0910002 【核心库】
|
DOI
|
10.3788/gzxb20215009.0910002
|
关键词
|
高光谱图像
;
异常目标检测
;
快速局部RX
;
扩展多属性剖面
;
Reed-Xiaoli
;
矩阵求逆引理
|
地址
|
1.
火箭军工程大学作战保障学院, 西安, 710025
2.
中国科学院西安光学精密机械研究所, 西安, 710119
3.
西安石油大学计算机学院, 西安, 710065
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
机械、仪表工业;自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7068155
|
参考文献 共
22
共2页
|
1.
徐冬冬. 基于分层引导滤波与最近邻正则化子空间的高光谱图像分类.
光子学报,2020,49(4):0410004
|
CSCD被引
4
次
|
|
|
|
2.
郭利强. 基于多标签共享子空间学习和内核脊回归的空谱分类算法.
光子学报,2020,49(5):0528001
|
CSCD被引
1
次
|
|
|
|
3.
马世欣. 基于空谱联合聚类的改进核协同高光谱异常检测.
光子学报,2019,48(1):0110003
|
CSCD被引
3
次
|
|
|
|
4.
王志威. 基于光谱空间重构的非监督最邻近规则子空间的高光谱异常检测.
光子学报,2020,49(6):0630004
|
CSCD被引
1
次
|
|
|
|
5.
薛庆生. 静止轨道高光谱海洋水色仪光学系统设计.
光子学报,2020,49(5):0501001
|
CSCD被引
2
次
|
|
|
|
6.
Reed I S. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution.
IEEE Transactions on Acoustics Speech & Signal Processing,1990,38(10):1760-1770
|
CSCD被引
160
次
|
|
|
|
7.
Li Z. Hyperspectral anomaly detection based on improved RX with CNN framework.
IEEE International Symposium on Geoscience and Remote Sensing IGARSS,2019:2244-2247
|
CSCD被引
1
次
|
|
|
|
8.
Hidalgo J A P. Efficient nonlinear RX anomaly detectors.
IEEE Geoscience and Remote Sensing Letters,2021,18(2):231-235
|
CSCD被引
1
次
|
|
|
|
9.
Ren L. A superpixel-based dual window RX for hyperspectral anomaly detection.
IEEE Geoscience and Remote Sensing Letters,2020,17(7):1233-1237
|
CSCD被引
3
次
|
|
|
|
10.
Imani M. RX anomaly detector with rectified background.
IEEE Geoscience and Remote Sensing Letters,2017,14(8):1313-1317
|
CSCD被引
8
次
|
|
|
|
11.
Li W. Collaborative representation for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2015,53(3):1463-1474
|
CSCD被引
57
次
|
|
|
|
12.
Ma N. A fast recursive collaboration representation anomaly detector for hyperspectral image.
IEEE Geoscience and Remote Sensing Letters,2019,16(4):588-592
|
CSCD被引
2
次
|
|
|
|
13.
Wu Z. hyperspectral anomaly detection using collaborative representation with PCA remove outlier.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018(11):1-5
|
CSCD被引
1
次
|
|
|
|
14.
Sun W. Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery.
Journal of Applied Remote Sensing,2014,8(1):83641
|
CSCD被引
21
次
|
|
|
|
15.
Zhang Y. A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection.
IEEE Transactions on Geoscience and Remote Sensing,2016,54(3):1-14
|
CSCD被引
36
次
|
|
|
|
16.
Song S. Hyperspectral anomaly detection via graph dictionary-based low rank decomposition with texture feature extraction.
Remote Sensing,2020,12(23):2072-4292
|
CSCD被引
1
次
|
|
|
|
17.
Benediktsson J A. Classification of hyperspectral data from urban areas based on extended morphological profiles.
IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):480-491
|
CSCD被引
86
次
|
|
|
|
18.
Dalla Mura M. Morphological attribute profiles for the analysis of very high resolution images.
IEEE Transactions on Geoscience and Remote Sensing,2010,48(10):3747-3762
|
CSCD被引
39
次
|
|
|
|
19.
Dalla Mura M. Extended profiles with morphological attribute filters for the analysis of hyperspectral data.
International Journal of Remote Sensing,2010,31(22):5975-5991
|
CSCD被引
24
次
|
|
|
|
20.
Andika F. A Hyperspectral anomaly detection algorithm based on morphological profile and attribute filter with band selection and automatic determination of maximum area.
Remote Sensing,2020,12(20):3387
|
CSCD被引
1
次
|
|
|
|
|