帮助 关于我们

返回检索结果

关联模式挖掘与词向量学习融合的伪相关反馈查询扩展
Pseudo-Relevance Feedback Query Expansion Based on the Fusion of Association Pattern Mining and Word Embedding Learning

查看参考文献27篇

黄名选 1,2  
文摘 针对自然语言处理中查询主题漂移和词不匹配问题,提出基于CSC(Copulas-based Support and Confidence)框架的关联模式挖掘与规则扩展算法,并将基于统计学分析的关联模式与具有上下文语义信息的词向量融合,提出关联模式挖掘与词向量学习融合的伪相关反馈查询扩展模型.该模型对伪相关反馈文档集挖掘规则扩展词,对初检文档集进行词嵌入学习训练得到词向量,计算规则扩展词与原查询的向量相似度,提取向量相似度不低于阈值的规则扩展词作为最终扩展词.实验结果表明,所提扩展模型能有效地减少查询主题漂移和词不匹配问题,提高检索性能,与现有基于关联模式的和基于词向量的查询扩展方法比较,MAP(Mean Average Precision)平均增幅最大可达17.52%,对短查询更有效.所提挖掘方法可用于其他文本挖掘任务和推荐系统,以提高其性能.
其他语种文摘 In order to solve the problems of query topic drift and word mismatch in natural language processing,an algorithm of association pattern mining and rule expansion based on CSC(Copulas-based Support and Confidence) framework is proposed.The association patterns based on statistical analysis are fused with the word embedding with context semantic information,and a pseudo-relevance feedback query expansion model is presented based on the fusion of association pattern mining and word embedding learning.In this model,the rule expansion terms are mined from the pseudo-relevance feedback document set,and the word vectors are obtained by word embedding learning training of the initial document set.The vector similarity between the rule expansion term and original query is calculated,and the rule expansion terms whose vector similarity is not lower than the threshold are extracted as the final expansion terms.The experimental results show that the proposed expansion model can effectively reduce the problems of query topic drift and word mismatch,improving the performance of information retrieval.Compared with the existing query expansion methods based on association pattern and word embedding,the average increase of the MAP(Mean Average Precision)of the proposed expansion model is up to 17.52%.The expansion model in this paper is more effective for short queries.The proposed mining method can be used in other text mining tasks and recommendation systems to improve their performance.
来源 电子学报 ,2021,49(7):1305-1313 【核心库】
DOI 10.12263/DZXB.20200654
关键词 自然语言处理 ; 信息检索 ; 文本挖掘 ; 词嵌入 ; 查询扩展
地址

1. 广西财经学院, 广西跨境电商智能信息处理重点实验室, 广西, 南宁, 530003  

2. 广西财经学院信息与统计学院, 广西, 南宁, 530003

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:7033725

参考文献 共 27 共2页

1.  Vaidyanathan R. Query expansion strategy based on pseudo relevance feedback and term weight scheme for monolingual retrieval. International Journal of Computer Applications,2015,105(8):1-6 CSCD被引 1    
2.  Keikha A. Query expansion using pseudo relevance feedback on Wikipedia. Journal of Intelligent Information Systems,2018,50(3):455-478 CSCD被引 4    
3.  Pan M. A simple kernel co-occurrencebased enhancement for pseudo-relevance feedback. Journal of the Association for Information Science and Technology (JASIST),2020,71(3):264-281 CSCD被引 1    
4.  Latiri C. Towards an effective automatic query expansion process using an association rule mining approach. Journal of Intelligent Information Systems,2012,39(1):209-247 CSCD被引 8    
5.  Bouziri A. Learning query expansion from association rules between terms. Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K),2015:525-530 CSCD被引 2    
6.  Bouziri A. Efficient association rules selecting for automatic query expansion. Proceedings of the 18th International Conference on Computational Linguistics & Intelligent Text Processing,2017:563-574 CSCD被引 1    
7.  Bouziri A. LTR-expand: Query Expansion Model Based on Learning to Rank Association Rules,2020 CSCD被引 1    
8.  Jabri S. Improving retrieval performance based on query expansion with Wikipedia and text mining technique. International Journal of Intelligent Engineering & Systems,2018,11(4):283-292 CSCD被引 2    
9.  Jabri S. A graph-based approach for text query expansion using pseudo relevance feedback and association rules mining. International Journal of Electrical&Computer Engineering,2019,9(6):5016-5023 CSCD被引 4    
10.  黄名选. 基于矩阵加权关联规则挖掘的伪相关反馈查询扩展. 软件学报,2009,20(7):1854-1865 CSCD被引 39    
11.  黄名选. 完全加权模式挖掘与相关反馈融合旳印尼汉跨语言查询扩展. 小型微型计算机系统,2017,38(8):1783-1791 CSCD被引 11    
12.  黄名选. 基于加权关联模式挖掘的越英跨语言查询扩展. 情报学报,2017,36(3):307-318 CSCD被引 10    
13.  黄名选. 基于项权值排序挖掘的跨语言查询扩展. 电子学报,2020,48(3):568-576 CSCD被引 4    
14.  黄名选. 基于完全加权正负关联模式挖掘的越-英跨语言查询译后扩展. 电子学报,2018,46(12):3029-3036 CSCD被引 8    
15.  Zhang H R. A new frequent pattern mining algorithm with weighted multiple minimum supports. Intelligent Automation & Soft Computing,2017,23(4):605-612 CSCD被引 5    
16.  Roy D. Word vector compositionality based relevance feedback using kernel density estimation. Proceedings of the 25th ACM International Conference on Information and Knowledge Management,2016:1281-1290 CSCD被引 4    
17.  Kuzi S. Query expansion using word embeddings. Proceedings of the 25th ACM International Conference on Information and Knowledge Management,2016:1929-1932 CSCD被引 4    
18.  许侃. 专利查询扩展的词向量方法研究. 计算机科学与探索,2018,12(6):972-980 CSCD被引 6    
19.  Sklar A. Fonctions de repartition a n dimensions et leurs marges. Publication de l'Institut de Statistique l'Universite Paris,1959,8(1):229-231 CSCD被引 7    
20.  Eickhoff C. Copulas for information retrieval. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'13),2013:663-672 CSCD被引 2    
引证文献 1

1 胡文浩 面向稠密检索的伪相关反馈方法 计算机应用,2023,43(4):1036-1042
CSCD被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号