同步相移数字全息综述(特邀)
A Comprehensive Review on Parallel Phase-shifting Digital Holography (Invited)
查看参考文献122篇
文摘
|
相移数字全息技术将相移技术与数字全息技术相结合,为微观物体的三维形貌和折射率分布检测提供了一种快速、无损、高精度手段。与离轴数字全息相比,相移数字全息采用同轴光路,可以充分利用CCD相机的空间带宽积。然而,传统相移数字全息需要依次记录多幅不同相移量全息图,才能消除零级像和共轭像,再现出无混叠的相位/振幅图像。同步相移又称瞬时相移,可在同一时间得到多幅不同相移量的干涉图样,克服普通相移干涉不能实时观测的缺点。介绍了相移的概念和实现方式,基于多CCD记录、像素掩膜、平行分光的三种同步相移技术,对同步相移数字全息在生物医学、流场测量、表面形貌测量、微纳器件检测等领域的应用进行综述,为从事同步相移数字全息技术及其应用研究的学者提供有益参考。 |
其他语种文摘
|
Phase-shifting Digital Holography(PSDH),which combines phase-shifting technology with digital holography,provides a fast,non-invasive,and high-precision approach for the three-dimensional morphology or refractive index distribution of microscopic objects. Compared with the off-axis digital holography, the phase-shifting on-axis digital holography makes full utilization of Spatial-bandwidth Product(SBP)of the CCD camera. The conventional phase-shifting digital holography needs to records multiple phase-shifting holograms in a step-by-step manner,from which the artifact-free phase and amplitude images of a sample can be reconstructed. To enhance the imaging speed of PSDH,parallel phase-shifting technique(or simultaneous phase-shifting technique) was proposed,with which multiple phase-shifting holograms can be obtained at the same time. In this paper,the concept and implementation of phase-shifting technologies are introduced firstly. Then,three different approaches of parallel phaseshifting, which are based on multiple CCDs,pixelated phase-mask,and parallel beam-splitting,are reviewed. Eventually, the applications of parallel PSDH in the biomedical field, air/liquid flow visualization,surface topography,micro-/nano-scale device inspection are introduced. |
来源
|
光子学报
,2021,50(7):0709001 【核心库】
|
DOI
|
10.3788/gzxb20215007.0709001
|
关键词
|
数字全息
;
相移技术
;
同步相移/瞬时相移
;
相移干涉
;
动态观测
|
地址
|
1.
西安电子科技大学物理与光电工程学院, 西安, 710071
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
陕西省自然科学基金
;
中央高校基本科研业务费专项资金
;
瞬态光学与光子技术国家重点实验室开放基金
;
江西省图像处理与模式识别国家重点实验室基金
|
文献收藏号
|
CSCD:7030028
|
参考文献 共
122
共7页
|
1.
Mico V. Superresolution digital holographic microscopy for three-dimensional samples.
Optics Express,2008,16(23):19260-19270
|
CSCD被引
8
次
|
|
|
|
2.
Langehanenberg P. Automated three-dimensional tracking of living cells by digital holographic microscopy.
Journal of Biomedical Optics,2009,14(1):014018
|
CSCD被引
7
次
|
|
|
|
3.
Belashov A V. Quantitative assessment of changes in cellular morphology at photodynamic treatment in vitro by means of digital holographic microscopy.
Biomedical Optics Express,2019,10(10):4975-4986
|
CSCD被引
3
次
|
|
|
|
4.
Komine S. In-situ measurement of surface relief induced by Widmanstatten and bainitic ferrites in low carbon steel by digital holographic microscopy.
Scripta Materialia,2019,162:241-245
|
CSCD被引
2
次
|
|
|
|
5.
Abbasian V. Digital holographic microscopy for 3D surface characterization of polymeric nanocomposites.
Ultramicroscopy,2018,185:72-80
|
CSCD被引
4
次
|
|
|
|
6.
Marquet P. Digital holographic microscopy:a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy.
Optics Letters,2005,30(5):468-470
|
CSCD被引
66
次
|
|
|
|
7.
Liu J. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
Applied Optics,2019,58(15):4042-4046
|
CSCD被引
5
次
|
|
|
|
8.
Belashov A V. In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning.
Journal of the Optical Society of America A,2020,37(2):346-352
|
CSCD被引
2
次
|
|
|
|
9.
O'Connor T. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy.
Biomedical Optics Express,2020,11(8):4491-4508
|
CSCD被引
4
次
|
|
|
|
10.
张益溢. 基于数字全息的血红细胞显微成像技术.
物理学报,2020,69(16):164201
|
CSCD被引
6
次
|
|
|
|
11.
Verpillat F. Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles.
Optics Express,2011,19(27):26044-26055
|
CSCD被引
7
次
|
|
|
|
12.
Zhou H. Application of digital holographic microscopy and microfluidic chips to the measurement of particle size distribution of fly ash after a wet electrostatic precipitator.
Flow Measurement and Instrumentation,2018,60:24-29
|
CSCD被引
5
次
|
|
|
|
13.
Lee S J. Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy.
Experiments in Fluids,2019,60:170
|
CSCD被引
3
次
|
|
|
|
14.
Zeng Y. Axial displacement measurement with high resolution of particle movement based on compound digital holographic microscopy.
Optics Communications,2020,475:126300
|
CSCD被引
1
次
|
|
|
|
15.
Chen Y. Optical element surface defect measurement with lensless digital holographic microscopy.
Holography,Diffractive Optics,and Applications VIII,2018
|
CSCD被引
1
次
|
|
|
|
16.
Liu B. Maximum a posteriori-based digital holographic microscopy for high-resolution phase reconstruction of a micro-lens array.
Optics Communications,2020,477:126364
|
CSCD被引
2
次
|
|
|
|
17.
Liu B. Wavelength-tuning common-path digital holographic microscopy for quantitative phase imaging of functional micro-optics components.
Applied Sciences,2020,10(16):5602
|
CSCD被引
3
次
|
|
|
|
18.
Jeon S H. Measurement of a mirror surface topography using 2-frame phase-shifting digital interferometry.
Journal of the Optical Society of Korea,2009,13(2):245-250
|
CSCD被引
1
次
|
|
|
|
19.
Xia P. Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system.
Optics Express,2018,26(10):12594-12604
|
CSCD被引
6
次
|
|
|
|
20.
毕泽坤. 基于两步广义相移干涉术的微纳形变测量.
光学技术,2018,44(2):252-256
|
CSCD被引
1
次
|
|
|
|
|