车-路协同电动汽车动态无线充电的路权调度控制
The Scheduling Control Strategy for In-motion EV Wireless Charging Based on Cooperative Vehicle Infrastructure System
查看参考文献17篇
文摘
|
在高级公路中设置无线充电专用道路,对行驶中的电动车辆进行动态无线充电,引发了交通工程领域的深刻变革.然而在最大限度的保证电动车辆充电能效的前提下,如何对这类车辆进行调度和管理,以提高行车安全和道路的通行能力是一个无法回避的关键问题.为此,本文首先建立了系统的车辆调度模型.然后提出了一种新的精英反向变异粒子群算法(Reverse Elitist Mutation Particle Swarm Optimization,REMPSO),通过与传统的粒子群和遗传算法的比对,证明了该算法的稳定性和寻优能力.然后使用这一算法对系统模型进行求解,得出充电行驶中的优化移动隔离分区.通过车-路协同为电动汽车动态无线充电的路权调度提供了一种可行的控制策略. |
其他语种文摘
|
Special roads set up in highway used to realize dynamic wireless charging for In-motion electric vehicles that leads to a profound change in the field of traffic engineering. However,on the premise of the maximum charging effect of EV,how to schedule and manage such vehicles to improve traffic safety and road capacity is a key issue that cannot be avoided. Therefore, this paper first establishes the vehicle scheduling model of the system. A new reverse elitist mutation particle swarm optimization (REMPSO) algorithm is proposed. And its rapidity,stability and optimization ability are proved by comparing with the traditional particle swarm optimization and genetic algorithm. Finally, this algorithm is used to solve the system model,and the optimal moving isolation partition is obtained. Based on cooperative vehicle infrastructure system,The paper provides a feasible control strategy for the right of way scheduling of dynamic wireless charging for In-motion EV. |
来源
|
电子学报
,2021,49(5):904-911 【核心库】
|
DOI
|
10.12263/DZXB.20200954
|
关键词
|
车路协同
;
电动汽车
;
动态无线充电
;
粒子群算法
;
路权调度
|
地址
|
长安大学电子与控制工程学院, 陕西, 西安, 710064
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术;公路运输 |
基金
|
国家重点研发计划
;
陕西省重点研发计划一般项目
;
陕西省西安市科技计划项目
|
文献收藏号
|
CSCD:6982173
|
参考文献 共
17
共1页
|
1.
Kurs A. Wireless power transfer via strongly coupled magnetic resonances.
Science,2007,317(5834):83-86
|
CSCD被引
366
次
|
|
|
|
2.
Onar O C. A novel wireless power transfer for in-motion EV/PHEV charging.
2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC),2013:3073-3080
|
CSCD被引
4
次
|
|
|
|
3.
Garcia-Vazquez C A. Comparative study of dynamic wireless charging of electric vehicles in motorway,highway and urban stretches.
Energy,2017,137:42-57
|
CSCD被引
2
次
|
|
|
|
4.
Zhang H. An electric roadway system leveraging dynamic capacitive wireless charging: Furthering the continuous charging of electric vehicles.
IEEE Electrification Magazine,2020,8(2):52-60
|
CSCD被引
1
次
|
|
|
|
5.
Venugopal P. Roadway to selfhealing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies.
Applied Energy,2018,212:1226-1239
|
CSCD被引
5
次
|
|
|
|
6.
Jang Y. Initial energy logistics cost analysis for stationary,quasi-dynamic,and dynamic wireless charging public transportation systems.
Energies,2016,9(7):483
|
CSCD被引
3
次
|
|
|
|
7.
Zhou S Y. Dynamic EV charging pricing methodology for facilitating renewable energy with consideration of highway traffic flow.
IEEE Access,2019,8:13161-13178
|
CSCD被引
2
次
|
|
|
|
8.
Machura P. Driving range of electric vehicles charged by wireless power transfer.
IEEE Transactions on Vehicular Technology,2020,69(6):5968-5982
|
CSCD被引
6
次
|
|
|
|
9.
Bi Z C. Life cycle assessment and tempo-spatial optimization of deploying dynamic wireless charging technology for electric cars.
Transportation Research Part C: Emerging Technologies,2019,100:53-67
|
CSCD被引
2
次
|
|
|
|
10.
Dai X. Charging area determining and power enhancement method for multiexcitation unit configuration of wirelessly dynamic charging EV system.
IEEE Transactions on Industrial Electronics,2019,66(5):4086-4096
|
CSCD被引
8
次
|
|
|
|
11.
Ntousakis I A. Optimal vehicle trajectory planning in the context of cooperative merging on highways.
Transportation Research Part C: Emerging Technologies,2016,71:464-488
|
CSCD被引
19
次
|
|
|
|
12.
Ding J. A rule-based cooperative merging strategy for connected and automated vehicles.
IEEE Transactions on Intelligent Transportation Systems,2020,21(8):3436-3446
|
CSCD被引
25
次
|
|
|
|
13.
李松. 改进粒子群算法优化BP神经网络的短时交通流预测.
系统工程理论与实践,2012,32(9):2045-2049
|
CSCD被引
58
次
|
|
|
|
14.
刘吉超. 基于GA-PSO混合优化的BPNN车速预测方法.
交通运输系统工程与信息,2017,17(6):40-47
|
CSCD被引
7
次
|
|
|
|
15.
Moslehi F. A novel hybrid GA-PSO framework for mining quantitative association rules.
Soft Computing,2020,24(6):4645-4666
|
CSCD被引
5
次
|
|
|
|
16.
韩红桂. 自适应分解式多目标粒子群优化算法.
电子学报,2020,48(7):1245-1254
|
CSCD被引
5
次
|
|
|
|
17.
Mousavi M. A fuzzy hybrid GA-PSO algorithm for multi-objective AGV scheduling in FMS.
International Journal of Simulation Modelling,2017,16(1):58-71
|
CSCD被引
13
次
|
|
|
|
|