Density-equicontinuity and Density-sensitivity
查看参考文献28篇
文摘
|
In this paper we introduce the notions of (Banach) density-equicontinuity and densitysensitivity. On the equicontinuity side, it is shown that a topological dynamical system is densityequicontinuous if and only if it is Banach density-equicontinuous. On the sensitivity side, we introduce the notion of density-sensitive tuple to characterize the multi-variant version of density-sensitivity. We further look into the relation of sequence entropy tuple and density-sensitive tuple both in measuretheoretical and topological setting, and it turns out that every sequence entropy tuple for some ergodic measure on an invertible dynamical system is density-sensitive for this measure; and every topological sequence entropy tuple in a dynamical system having an ergodic measure with full support is densitysensitive for this measure. |
来源
|
Acta Mathematica Sinica. English Series
,2021,37(2):345-361 【核心库】
|
DOI
|
10.1007/s10114-021-0211-2
|
关键词
|
Density equicontinuity
;
density sensitivity
;
sequence entropy
|
地址
|
1.
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116
2.
School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, 519082
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
supported by NSF of Jiangsu Province
;
国家自然科学基金
;
Science Foundation of Jiangsu Normal University
;
国家自然科学基金
|
文献收藏号
|
CSCD:6980039
|
参考文献 共
28
共2页
|
1.
Akin E. When is a Transitive Map Chaotic?.
Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., Vol. 5,1996:25-40
|
CSCD被引
2
次
|
|
|
|
2.
Akin E. Residual properties and almost equicontinuity.
J. Anal. Math,2001,84:243-286
|
CSCD被引
10
次
|
|
|
|
3.
Auslander J. Interval maps, factors of maps and chaos.
Tohoku Math. J,1980,32:177-188
|
CSCD被引
20
次
|
|
|
|
4.
Downarowicz T. Isomorphic extension and applications.
Topol. Methods Nonlinear Anal,2016,48:321-338
|
CSCD被引
3
次
|
|
|
|
5.
Fomin S. On dynamical systems with a purely point spectrum.
Dokl. Akad. Nauk SSSR. (in Russian),1951,77:29-32
|
CSCD被引
3
次
|
|
|
|
6.
Furstenberg H.
Recurrence in Ergodic Theory and Combinatorial Number Theory,1981
|
CSCD被引
23
次
|
|
|
|
7.
Garcia-Ramos F. Mean equicontinuity, almost automorphy and regularity.
arXiv: 1908.05207,2019
|
CSCD被引
1
次
|
|
|
|
8.
Garcia-Ramos F. When is a dynamical system mean sensitive?.
Ergodic Theory Dynam. Systems,2019,39(6):1608-1636
|
CSCD被引
2
次
|
|
|
|
9.
Glasner E. The structure of tame minimal dynamical systems for general groups.
Invent. Math,2018,211:213-244
|
CSCD被引
3
次
|
|
|
|
10.
Huang W. Null systems and sequence entropy pairs.
Ergodic Theory Dynam. Systems,2003,23:1505-1523
|
CSCD被引
7
次
|
|
|
|
11.
Huang W. Measure-theoretical sensitivity and equicontinuity.
Israel J. Math,2011,183:233-283
|
CSCD被引
8
次
|
|
|
|
12.
Huang W. Sequence entropy pairs and complexity pairs for a measure.
Ann. Inst. Fourier (Grenoble),2004,54:1005-1028
|
CSCD被引
4
次
|
|
|
|
13.
Huang W. A local variational relation and applications.
Israel J. Math,2006,151:237-279
|
CSCD被引
10
次
|
|
|
|
14.
Kerr D. Independence in topological and C*-dynamics.
Math. Ann,2007,338:869-926
|
CSCD被引
13
次
|
|
|
|
15.
Kerr D. Combinatorial independence in measurable dynamics.
J. Funct. Anal,2009,256:1341-1386
|
CSCD被引
2
次
|
|
|
|
16.
Li J. Measure-theoretic sensitivity via finite partitions.
Nonlinearity,2016,29:2133-2144
|
CSCD被引
3
次
|
|
|
|
17.
Li J. On proximality with Banach density one.
J. Math. Anal. Appl,2014,416:36-51
|
CSCD被引
6
次
|
|
|
|
18.
Li J. Mean equicontinuity and mean sensitivity.
Ergodic Theory Dynam. Systems,2015,35:2587-2612
|
CSCD被引
11
次
|
|
|
|
19.
Li J. How chaotic is an almost mean equicontinuous system?.
Discrete Contin. Dyn. Syst,2018,38:4727-4744
|
CSCD被引
1
次
|
|
|
|
20.
Li J. Mean equicontinuity, complexity and applications.
Discrete Contin. Dyn. Syst,2020
|
CSCD被引
1
次
|
|
|
|
|