Some Explorations on Two Conjectures About Rademacher Sequences
查看参考文献15篇
文摘
|
qIn this paper, we explore two conjectures about Rademacher sequences. Let(ε_i)be a Rademacher sequence, i.e., a sequence of independent {-1, 1}-valued symmetric random variables. Set S_n = a_1ε_1+···+a_nε_n for a =(a_1, ···, a_n)∈ R~n. The first conjecture says that P(|S_n| ≤ ∥a∥)≥ 1/2 for all a ∈ R~n and n ∈ N. The second conjecture says that P(|S_n| ≥ ∥a∥)≥ 7/32 for all a ∈ R~n and n ∈ N. Regarding the first conjecture, we present several new equivalent formulations. These include a topological view, a combinatorial version and a strengthened version of the conjecture. Regarding the second conjecture, we prove that it holds true when n ≤ 7. |
来源
|
Acta Mathematicae Applicatae Sinica-English Series
,2021,37(1):1-16 【核心库】
|
DOI
|
10.1007/s10255-021-0993-0
|
关键词
|
Rademacher sequence
;
Tomaszewaki's constant
;
Hitczenko and Kwapien's constant
|
地址
|
1.
College of Mathematics, Sichuan University, Chengdu, 610065
2.
School of Economics and Statistics, Guangzhou University, Guangzhou, 510006
3.
Department of Mathematics and Statistics, Concordia University, Canada, Montreal, H3G 1M8
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0168-9673 |
学科
|
数学 |
基金
|
国家自然科学基金
;
国家留学基金委员会(CSC)项目
;
加拿大自然科学与工程研究理事会(NSERC)项目
|
文献收藏号
|
CSCD:6915535
|
参考文献 共
15
共1页
|
1.
Ben-Tal A. Robust solutions of uncetain quadratic and conic-quadratic problems.
SIAM J. Optim,2002,13:535-560
|
CSCD被引
6
次
|
|
|
|
2.
Boppana R B. Tomaszewsk's problem on randomly signed sums: breaking the 3/8 barrier.
arXiv: 1704.00350v3,2017
|
CSCD被引
1
次
|
|
|
|
3.
Burkholder D L. Independent sequences with the Stein property.
Ann. Math. Statis,1967,39:1282-1288
|
CSCD被引
4
次
|
|
|
|
4.
De A. A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geoemtry.
SIAM J. Disc. Math,2016,30:1058-1094
|
CSCD被引
1
次
|
|
|
|
5.
Dzindzalieta D. A note on random signs.
Lithuanian Math. J,2014,54:403-408
|
CSCD被引
1
次
|
|
|
|
6.
Dzindzalieta D.
Tight Bernoullie tail probability bounds. PhD thesis,2014
|
CSCD被引
1
次
|
|
|
|
7.
Guy R K. Any answers anent these analytical enigmas?.
Amer. Math. Mon,1986,93:279-281
|
CSCD被引
3
次
|
|
|
|
8.
Hendriks H. Linear combinatorics of Rademacher random variables.
arXiv: 1703.07251v1,2017
|
CSCD被引
1
次
|
|
|
|
9.
von Heymann F.
Ideas for an old analytic enigma about the sphere that fail in intriguing ways,2012
|
CSCD被引
1
次
|
|
|
|
10.
Hitczenko P. On the Rademacher series.
Probability in Banach spaces, 9 (Sandjberg, 1994), Volume 35 of Progr. Probab. 31-36,1994
|
CSCD被引
1
次
|
|
|
|
11.
Holzman R. On the product of sign vectors and unit vectors.
Combinatorica,1992,12:303-316
|
CSCD被引
2
次
|
|
|
|
12.
Oleszkiewicz K. On the Stein property of Rademacher sequences.
Probab. Math. Stat,1996,16:127-130
|
CSCD被引
1
次
|
|
|
|
13.
Shnurnikov I. On a sum of centered random variables with nonreducing variances.
arXiv: 1202.2990v2,2012
|
CSCD被引
1
次
|
|
|
|
14.
Toufar T.
Tomaszewski's conjecture. Master thesis,2018
|
CSCD被引
1
次
|
|
|
|
15.
van Zruilen M C A. On a conjecture concerning the sum of independent Rademacher random variables.
arXiv: 1112.4988v1,2011
|
CSCD被引
1
次
|
|
|
|
|