帮助 关于我们

返回检索结果

复杂背景下全景视频运动小目标检测算法
Panoramic video motion small target detection algorithm in complex background

查看参考文献19篇

王殿伟 1   杨旭 1 *   韩鹏飞 2   刘颖 1   谢永军 3   宋海军 3  
文摘 为解决复杂背景下全景视频中运动小目标检测精度低的问题,提出一种基于复杂背景下全景视频运动小目标检测算法.首先,为降低复杂背景信息的干扰,提高目标检测的精度,采用快速鲁棒性主成分分析(Fast RPCA)算法将全景视频图像的前景背景信息分离,并提取出前景信息作为有效的图像特征;然后,改进更快的基于区域的卷积神经网络(Faster R-CNN)中的区域生成网络(RPN)的候选框尺度大小,使之适应全景图像中的目标尺寸,再对前景特征图进行训练;最后,通过RPN网络和Fast R-CNN网络共享卷积层输出检测模型,实现对全景视频图像中小目标的精准检测.实验结果表明,所提出算法可以有效抑制复杂的背景信息对目标检测精度的影响,并对全景视频图像中的运动小目标具有较高的检测精度.
其他语种文摘 In order to solve the problem of low detection accuracy of moving small targets in the panoramic video in complex background, a small target detection algorithm based on complex background motion is proposed. Firstly, to reduce the interference of complex background information and improve the accuracy of target detection, the fast robust principal component analysis (Fast RPCA) algorithm is used to separate the foreground background information of the panoramic video image, and the foreground information is extracted as an effective image feature. Then, the candidate frame size of the region proposal network (RPN) in the faster region-convolutional neural networks (Faster R-CNN) is improved to adapt to the target size in the panoramic image, and then the foreground feature map is trained. Finally, the convolutional layer output detection model is shared by the RPN network and the Fast R-CNN network to achieve accurate detection of small targets in the panoramic video image. Experiments show that the proposed algorithm can effectively suppress the influence of complex background information on target detection accuracy, and has high detection accuracy for small moving targets in panoramic video images.
来源 控制与决策 ,2021,36(1):249-256 【核心库】
DOI 10.13195/j.kzyjc.2019.0686
关键词 全景图像 ; Fast RPCA ; Faster R-CNN ; 目标检测
地址

1. 西安邮电大学通信与信息工程学院, 西安, 710121  

2. 西湖大学, 人工智能研究与创新中心, 杭州, 310024  

3. 中国科学院西安光学精密机械研究所, 西安, 710119

语种 中文
文献类型 研究性论文
ISSN 1001-0920
学科 自动化技术、计算机技术
基金 陕西省自然科学基金基础研究计划科技创新“双导师制”项目 ;  西安邮电大学创新创业基金项目 ;  西安邮电大学研究生创新基金项目
文献收藏号 CSCD:6891282

参考文献 共 19 共1页

1.  Girshick R. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587 CSCD被引 286    
2.  Girshick R. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(1):142-158 CSCD被引 211    
3.  He K M. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916 CSCD被引 1392    
4.  Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV),2015:1440-1448 CSCD被引 136    
5.  Ren S Q. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149 CSCD被引 4540    
6.  Redmon J. You only look once: Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016:779-788 CSCD被引 286    
7.  Liu Wei. SSD: Single shot multibox detector. European Conference on Computer Vision (ECCV),2016:21-37 CSCD被引 33    
8.  Huang L C. Densebox: Unifying landmark localization with end to end object detection. Computer Science,2015 CSCD被引 1    
9.  Lin T. Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV),2017:2999-3007 CSCD被引 2    
10.  李会军. 一种基于视觉特征区域建议的目标检测方法. 控制与决策,2020,35(6):1323-1328 CSCD被引 3    
11.  Uijlings J R R. Selective search for object recognition. International Journal of Computer Vision,2013,104(2):154-171 CSCD被引 440    
12.  Zitnick C L. Edge boxes: Locating object proposals from edges. European Conference on Computer Vision,2014:391-405 CSCD被引 46    
13.  Agrawal P. Analyzing the performance of multilayer neural networks for object recognition. European Conference on Computer Vision,2014:329-344 CSCD被引 2    
14.  Dai J. R-FCN: Object detection via region-based fully convolutional networks. Conference on Neural Information Processing Systems,2016:379-387 CSCD被引 6    
15.  He K. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV),2017:2980-2988 CSCD被引 25    
16.  Lin T Y. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017:936-944 CSCD被引 160    
17.  Rodriguez P. Fast principal component pursuit via alternating minimization. 2013 IEEE International Conference on Image Processing (ICIP),2013:69-73 CSCD被引 1    
18.  Candes E J. Robust principal component analysis?. Journal of theACM,2011,58(3):1-37 CSCD被引 8    
19.  Wang J. Region proposal by guided anchoring. 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2019:2960-2969 CSCD被引 1    
引证文献 4

1 李兰 基于YOLOv4改进算法的复杂行人检测模型研究 计算机工程与科学,2022,44(8):1449-1456
CSCD被引 2

2 吴启宇 基于深度/单目融合视觉及强化学习的机器人定位棋局与行棋策略 控制与决策,2022,37(12):3278-3288
CSCD被引 1

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号