帮助 关于我们

返回检索结果

基于高光谱技术与机器学习的新疆红枣品种鉴别
Identification of Xinjiang Jujube Varieties Based on Hyperspectral Technique and Machine Learning

查看参考文献18篇

刘立新 1,2   何迪 1   李梦珠 1   刘星 3   屈军乐 4  
文摘 为实现对红枣品种的判别,利用高光谱技术并结合机器学习算法对金丝大枣、骏枣和滩枣这三个品种的新疆红枣进行研究。首先,分别利用多元散射校正(MSC)、标准正态变量变换(SNV)、一阶导(1-Der)和Savitzky-Golay(SG)平滑等数据预处理方法对原始光谱进行预处理,研究了预处理方法对建模的影响;然后,利用光谱-理化值共生距离法(SPXY)将样本集划分为校正集和预测集,基于线性判别分析(LDA)、K-最近邻分类(KNN)和支持向量机(SVM)算法对预处理后的全波段光谱建立红枣品种鉴别模型,结果显示,在多种预处理方法中,1-Der的处理效果最好;然后,结合主成分分析(PCA)、连续投影算法(SPA)和竞争性自适应重加权采样(CARS)等特征提取方法对全波段光谱进行特征波段的提取,再基于特征波段建立红枣品种鉴别模型,结果发现,在几种特征提取方法中,基于CARS所提特征波段建立的模型可以获得最高的鉴别准确率;最后,以SVM模型为例对模型运行时间进行了比较,结果发现,基于特征波段所建模型的运行时间远短于基于全波段所建模型的运行时间。
其他语种文摘 To identify different Xinjiang jujube varieties, a hyperspectral technique and machine learning algorithms were employed to obtain and analyze the spectral data of Jinsi-jujube, Jun-jujube, and Tan-jujube. First, the original spectra were preprocessed using various data preprocessing methods, including multiplicative scatter correction (MSC), standard normal variate transformation (SNV), first-derivative (1-Der), and Savitzky-Golay (SG) smoothing. The effects of the preprocessing methods on modeling were investigated. Then, the samples were divided into calibration and prediction sets using sample set partitioning methods based on joint X-Y distance (SPXY). The jujube variety identification models were established based on linear discriminant analysis (LDA),Knearest neighbor (KNN), and support vector machine (SVM) algorithms using the preprocessed full-band spectra. The results demonstrate that 1-Der outperformed other preprocessing methods mentioned above. Next, the characteristic bands were extracted from the full-band spectra using principal component analysis (PCA), successive projections algorithm (SPA), and competitive adaptive reweighted sampling (CARS). Then, the jujube variety identification models were established based on the characteristic bands. The CARS-based models achieved the highest accuracy in the models established based on several characteristic band extraction methods. Finally, taking the SVM model as an example, the model runtime was compared. The time required by the SVM model based on the characteristic bands was much shorter than the time required by the model based on the full-band spectra.
来源 中国激光 ,2020,47(11):1111002 【核心库】
DOI 10.3788/CJL202047.1111002
关键词 光谱学 ; 高光谱技术 ; 机器学习 ; 品种鉴别 ; 数据预处理 ; 特征波段提取
地址

1. 西安电子科技大学物理与光电工程学院, 陕西, 西安, 710071  

2. 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119  

3. 深圳技术大学中德智能制造学院, 广东, 深圳, 518118  

4. 深圳大学物理与光电工程学院, 光电子器件与系统教育部/广东省重点实验室, 广东, 深圳, 518060

语种 中文
文献类型 研究性论文
ISSN 0258-7025
学科 物理学
基金 国家自然科学基金 ;  国家教育部高等学校学科创新引智计划项目 ;  深圳大学光电子器件与系统教育部/广东省重点实验室开放基金 ;  瞬态光学与光子技术国家重点实验室开放基金
文献收藏号 CSCD:6861887

参考文献 共 18 共1页

1.  Goetz A F H. Imaging spectrometry for earth remote sensing. Science,1985,228(4704):1147-1153 CSCD被引 116    
2.  Tagesson T. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability. Global Change Biology,2015,21(1):250-264 CSCD被引 3    
3.  Amodio M L. The use of hyperspectral imaging to predict the distribution of internal constituents and to classify edible fennel heads based on the harvest time. Computers and Electronics in Agriculture,2017,134:1-10 CSCD被引 3    
4.  Li C. Melon seed variety identification based on hyperspectral technology combined with discriminant analysis. Bangladesh Journal of Botany,2017,46(3):1153-1160 CSCD被引 1    
5.  Ravikanth L. Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food and Bioprocess Technology,2017,10(1):1-33 CSCD被引 5    
6.  Goto A. Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer. Journal of Biomedical Optics,2015,20(1):016017 CSCD被引 5    
7.  Markgraf W. Hyperspectral imaging for ex-vivo organ characterization during normothermic machine perfusion. European Urology Supplements,2018,17(2):e767 CSCD被引 1    
8.  刘立新. 高光谱成像技术在生物医学中的应用进展. 中国激光,2018,45(2):0207017 CSCD被引 16    
9.  Chander S. Water quality assessment of river ganga and chilika lagoon using AVIRIS-NG hyperspectral data. Current Science,2019,116(7):1172-1181 CSCD被引 2    
10.  虞佳维. 高光谱信息的农林植被种类区分. 光谱学与光谱分析,2018,38(12):3890-3896 CSCD被引 7    
11.  Li J B. Application of long-wave near infrared hyperspectral imaging for measurement of soluble solid content (SSC) in pear. Food Analytical Methods,2016,9(11):3087-3098 CSCD被引 3    
12.  Zhang C. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. Journal of Food Engineering,2016,179:11-18 CSCD被引 23    
13.  Ma T. Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging. Journal of Food Engineering,2018,224:53-61 CSCD被引 9    
14.  饶利波. 基于高光谱成像技术结合堆栈自动编码器-极限学习机方法的苹果硬度检测. 激光与光电子学进展,2019,56(11):113001 CSCD被引 6    
15.  邓小玲. 基于主成分分析和BP神经网络的柑橘黄龙病诊断技术. 光子学报,2014,43(4):0430002 CSCD被引 3    
16.  Sun Y. Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches. LWT-Food Science and Technology,2017,75:557-564 CSCD被引 17    
17.  樊阳阳. 基于近红外高光谱成像技术的干制红枣品种鉴别. 光谱学与光谱分析,2017,37(3):836-840 CSCD被引 14    
18.  Pan X Y. Non-destructive classification of apple bruising time based on visible and near-infrared hyperspectral imaging. Journal of the Science of Food and Agriculture,2019,99(4):1709-1718 CSCD被引 3    
引证文献 17

1 王绪泉 近红外光谱传感物联网研究与应用进展 中国激光,2021,48(12):1210001
CSCD被引 3

2 朱培培 寒地粳稻种子的拉曼光谱鉴别方法研究 中国粮油学报,2021,36(7):169-174
CSCD被引 1

显示所有17篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号