基于全局估计的水下偏振成像算法
Algorithm for Underwater Polarization Imaging Based on Global Estimation
查看参考文献25篇
文摘
|
为了实现高偏振度(HDOP)水下目标的清晰成像,分析了传统水下偏振成像模型,从Schechner模型出发,以偏振度定义为基础,提出了一种对后向散射光偏振度进行全局估计的偏振成像复原算法,该算法考虑了目标反射光的偏振度。进行了水槽偏振成像实验,对拍摄的三种目标在不同浓度浑浊水体中的偏振图像进行了复原。复原结果表明,与Schechner原算法相比,经所提偏振成像算法处理后,复原图像的增强测度值提高了90%以上,图像灰度的平均梯度、图像灰度的标准差和信息熵也都有提升。不同目标偏振图像的复原结果表明,所提算法不但适用于表面粗糙的低偏振度(LDOP)水下目标,对表面光滑的HDOP水下目标也能取得满意的复原效果。 |
其他语种文摘
|
In order to realize the clear imaging of underwater targets with high degree of polarization (HDOP),the traditional polarization imaging model is analyzed. Based on the Schechner polarization imaging model and the definition of polarization degree, a polarization imaging restoration algorithm is proposed to globally estimate the polarization degree of backscattered light, which considers the polarization degree of reflected light of targets. The polarization imaging experiment is conducted, in which the polarization images of three kinds of targets in turbid water with different concentrations are restored. The restoration results show that the measure of enhancement value of the restored image is increased by more than 90% compared to the original Schechner algorithm. Meanwhile, the average gradient, standard deviation and information entropy of image grey are also increased. The restoration results of different polarization images of targets show that the proposed algorithm is not only suitable for the underwater targets with low degree of polarization (LDOP) and rough surfaces, but also makes the underwater targets with HDOP and smooth surfaces gain satisfactory restoration effect. |
来源
|
光学学报
,2020,40(21):2111002 【核心库】
|
DOI
|
10.3788/AOS202040.2111002
|
关键词
|
成像系统
;
偏振成像
;
水下图像复原
;
后向散射
;
全局估计
|
地址
|
1.
中国科学院西安光学精密机械研究所海洋光学技术研究室, 陕西, 西安, 710119
2.
青岛海洋科学与技术试点国家实验室, 青岛海洋科学与技术试点国家实验室, 山东, 青岛, 266071
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
物理学 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6861324
|
参考文献 共
25
共2页
|
1.
Watson J. Underwater visual inspection and measurement using optical holography.
Optics and Lasers in Engineering,1992,16(4/5):375-390
|
CSCD被引
4
次
|
|
|
|
2.
Bailey G N. Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology.
Quaternary Science Reviews,2008,27(23/24):2153-2165
|
CSCD被引
9
次
|
|
|
|
3.
Schechner Y Y. Recovery of underwater visibility and structure by polarization analysis.
IEEE Journal of Oceanic Engineering,2005,30(3):570-587
|
CSCD被引
82
次
|
|
|
|
4.
Lewis G D. Backscattering target detection in a turbid medium by polarization discrimination.
Applied Optics,1999,38(18):3937-3944
|
CSCD被引
5
次
|
|
|
|
5.
Treibitz T. Active polarization descattering.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(3):385-399
|
CSCD被引
65
次
|
|
|
|
6.
Chang P. Improving visibility depth in passive underwater imaging by use of polarization.
Applied Optics,2003,42(15):2794-2803
|
CSCD被引
12
次
|
|
|
|
7.
Wolff L B. Polarization vision: a new sensory approach to image understanding.
Image and Vision Computing,1997,15(2):81-93
|
CSCD被引
18
次
|
|
|
|
8.
Sabbah S.
Under water polarization vision-a physical examination,2005
|
CSCD被引
1
次
|
|
|
|
9.
Giakos G C. Active backscattered optical polarimetric imaging of scattered targets.
Proceedings of the IEEE,2004,88(6):6726415
|
CSCD被引
1
次
|
|
|
|
10.
Cariou J. Polarization effects of seawater and underwater targets.
Applied Optics,1990,29(11):1689-1695
|
CSCD被引
10
次
|
|
|
|
11.
Li X B. Polarimetric image recovery method combining histogram stretching for underwater imaging.
Scientific Reports,2018,8(1):12430
|
CSCD被引
25
次
|
|
|
|
12.
Huang B J. Underwater image recovery considering polarization effects of objects.
Optics Express,2016,24(9):9826-9838
|
CSCD被引
43
次
|
|
|
|
13.
杨力铭. 基于非偏振光照明的水下偏振成像目标增强技术.
光学学报,2018,38(6):0611003
|
CSCD被引
15
次
|
|
|
|
14.
Schechner Y Y. Clear underwater vision.
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 27-July 2, 2004,Washington, DC, USA,2004:8161435
|
CSCD被引
1
次
|
|
|
|
15.
管今哥. 基于Stokes矢量的实时偏振差分水下成像研究.
物理学报,2015,64(22):224203
|
CSCD被引
13
次
|
|
|
|
16.
Tyo J S. Target detection in optically scattering media by polarization-difference imaging.
Applied Optics,1996,35(11):1855-1870
|
CSCD被引
29
次
|
|
|
|
17.
田恒. 浑浊介质中图像对比度与成像方式的关系.
物理学报,2016,65(8):084201
|
CSCD被引
4
次
|
|
|
|
18.
Miller P C. Demonstration of improved automatic target-recognition performance by moment analysis of correlation peaks.
Applied Optics,1999,38(8):1325-1331
|
CSCD被引
2
次
|
|
|
|
19.
Dubreuil M. Exploring underwater target detection by imaging polarimetry and correlation techniques.
Applied Optics,2013,52(5):997-1005
|
CSCD被引
24
次
|
|
|
|
20.
Schechner Y Y. Recovering scenes by polarization analysis.
Oceans' 04 MTS/IEEE Techno-Ocean' 04, November 9-12, 2004, Kobe, Japan,2004:8304660
|
CSCD被引
1
次
|
|
|
|
|