异形排气管多向局部加载液力成形工艺
Hydro-mechanical Forming Process Combined with Multi-directional Local Loading for Special-shaped Exhaust Pipes
查看参考文献22篇
文摘
|
针对某乘用车异形排气管整体制造的难题,开展4系列不锈钢管材包括多向局部加载液力成形新方法的全流程液力成形工艺研究。基于Dynaform有限元模拟软件,建立绕弯成形及液力成形的有限元模型,监测管材壁厚分布的演化规律,进而优化成形工艺参数,开展实验验证。研究结果表明:初始管材直径对液力成形管材壁厚分布影响显著,初始管材直径为54mm时能很好地满足工艺要求;在纵向加载液力成形阶段,可通过在上模具设计凸筋来实现对管材的局部加载成形,而在横向加载液力成形阶段,内压为48MPa时可避免管材破裂、折叠等缺陷的产生;此外,局部加载液力成形可导致管材的应力应变状态发生明显改变,变形区管材的壁厚呈现增大趋势,最大减薄率由27.43%降至24.65%,最终零件的最大减薄率为28.05%。实验结果与模拟结果基本吻合,最大偏差值仅为2.89%。 |
其他语种文摘
|
In order to solve the manufacturing problems of the integrated exhaust pipes with special shapes in one kind of passenger car,the whole hydro-mechanical forming processes combined with multi-directional local loading of 4series stainless steel tubes were carried out.Based on Dynaform software,the finite elements models of rotary bending and hydro-mechanical forming were established,and the evolution law of the wall thickness distribution of the tubes was monitored to optimize the forming parameters and develop experimental verification.The results show that the initial tube diameter has a significant effect on the wall thickness distribution of the hydro-mechanical formed tubes,and the initial tube diameter of 54mm may meet the process requirements.In the longitudinal hydro-mechanical forming stages,the local loading to the tubes may be achieved by the convex ribs of the upper dies.And in the horizontal hydro-mechanical forming stages,the internal pressure of 48 MPa may avoid the occurrence of cracks,material folding and other defects.In addition,the hydromechanical forming combined with local loading may significantly change the stress and strain states of the tubes.The wall thickness of the tubes in the deformation zones shows an increasing trend.The maximum thinning rate of the tubes is reduced from 27.43%to 24.65%,while the maximum thinning rate of the final parts is as 28.05%.The simulation and experimental results are basically consistent and the maximum deviation is only 2.89%. |
来源
|
中国机械工程
,2020,31(22):2763-2771 【核心库】
|
DOI
|
10.3969/j.issn.1004-132x.2020.22.014
|
关键词
|
管材弯曲
;
多向局部加载
;
液力成形
;
排气管
;
有限元模拟
|
地址
|
1.
中国科学院金属研究所, 师昌绪先进材料创新中心, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-132X |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
中国科学院青年创新促进会专项
|
文献收藏号
|
CSCD:6844139
|
参考文献 共
22
共2页
|
1.
Lang L H. Hydroforming Highlights:Sheet Hydroforming and Tube Hydroforming.
Journal of Materials Processing Technology,2004,151(1/3):165-177
|
CSCD被引
31
次
|
|
|
|
2.
郭训忠.
金属空心构件先进冷成形技术,2019
|
CSCD被引
2
次
|
|
|
|
3.
徐勇. 新型液压成形技术的研究进展.
精密成形工程,2016,8(5):7-14
|
CSCD被引
15
次
|
|
|
|
4.
李洪洋. 管材内高压成形国内研究进展及发展趋势.
中国机械工程,2006,17(增刊1):54-59
|
CSCD被引
6
次
|
|
|
|
5.
章志兵. 管材液压成形中的数值模拟方法.
中国机械工程,2008,19(16):1996-2000
|
CSCD被引
2
次
|
|
|
|
6.
王志坚. 不同成形工艺对金属密封件坐封效果的影响.
中国机械工程,2018,29(2):237-241
|
CSCD被引
2
次
|
|
|
|
7.
Xu Y. Formability Improvement of Austenitic Stainless Steel by Pulsating Hydroforming.
Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2015,229(4):609-615
|
CSCD被引
8
次
|
|
|
|
8.
Xu Y. Application of Pulsating Hydroforming in Manufacture of Engine Cradle of Austenitic Stainless Steel.
Procedia Engineering,2014,81:2205-2210
|
CSCD被引
7
次
|
|
|
|
9.
Xu Y. Effect of Process Parameters on Hydroforming of Stainless Steel Tubular Components with Rectangular Section.
Materials Science Forum. 749,2013:67-74
|
CSCD被引
1
次
|
|
|
|
10.
Ma Y. Investigation on Formability Enhancement of 5A06 Aluminum Sheet by Impact Hydroforming.
CIRP Annals,2018,67(1):281-284
|
CSCD被引
11
次
|
|
|
|
11.
陈晓华. AA5083管件颗粒介质非均匀内压温热胀形工艺性能解析.
中国机械工程,2016,27(24):3375-3381
|
CSCD被引
1
次
|
|
|
|
12.
He Z B. Formability and Microstructure of AA6061Al Alloy Tube for Hot Metal Gas Forming at Elevated Temperature.
Transactions of Nonferrous Metals Society of China,2012,22:s364-s369
|
CSCD被引
14
次
|
|
|
|
13.
Muller K. Hydroforging of Thick-walled Hollow Aluminum Profiles.
Key Engineering Materials,2012,1665:181-186
|
CSCD被引
2
次
|
|
|
|
14.
Roeper M. Hydroforging:a New Manufacturing Technology for Forged Lightweight Products of Aluminum.
International Mechanical Engineering Congress and Exposition.American Society of Mechanical Engineers Digital Collection,2005:297-304
|
CSCD被引
1
次
|
|
|
|
15.
刘伟. 复杂曲面件多向加载液压成形技术.
精密成形工程,2016,8(5):1-6
|
CSCD被引
3
次
|
|
|
|
16.
Alzahrani B. Analytical and Numerical Modeling of Thick Tube Hydroforging.
Procedia Engineering,2014,81:2223-2229
|
CSCD被引
3
次
|
|
|
|
17.
Xu Y. Numerical and Experimental Study on Large Deformation of Thin-walled Tube through Hydroforging Process.
International Journal of Advanced Manufacturing Technology,2016,87(5):1-6
|
CSCD被引
5
次
|
|
|
|
18.
Xia L L. Deformation Characteristics in Hydro-mechanical Forming Process of Thin-walled Hollow Component with Large Deformation:Experimentation and Finite Element Modeling.
The International Journal of Advanced Manufacturing Technology,2019,104(9/12):4705-4714
|
CSCD被引
6
次
|
|
|
|
19.
寇永乐. 薄壁管数控弯曲应变的网格法研究.
中国机械工程,2006,17(增刊1):31-34
|
CSCD被引
5
次
|
|
|
|
20.
Ma Y. The Effect of Tube Bending,Heat Treatment and Loading Paths on Process Responses of Hydroforming for Automobile Intercooler Pipe:Numerical and Experimental Investigations.
The International Journal of Advanced Manufacturing Technology,2017,91(5/8):2369-2381
|
CSCD被引
7
次
|
|
|
|
|