高功率准连续半导体激光阵列中应变对独立发光点性能的影响
Influence of Strain on Performance of Independent Emitters in High Power Quasi-continuous Semiconductor Laser Array
查看参考文献32篇
文摘
|
为了解决阵列中每个发光点性能分布不均的问题,研究了微通道水冷封装的960 nm半导体激光器阵列,阵列包含38个发光点,腔长为2 mm,在驱动电流为600A、占空比为10%的条件下,输出的峰值功率达到665.6W,电光转换效率为63.8%,中心波长为959.5 nm.通过对应力的理论分析,给出了各个发光点应变的表达式;通过搭建单点测试系统获得阵列中每个发光点的阈值电流、斜率效率、光谱和功率等光电特性;结合应变理论分析可知,器件中发光点的性能与应变大小和类型密切相关,压应变会导致器件波长蓝移、阈值电流降低、功率和斜率效率升高,张应变会导致波长红移、阈值电流升高、功率和斜率效率降低.研究表明,影响器件内部发光点的性能不仅与热效应有关,而且与封装后残余的应变密切相关,通过应力的分布可以预测阵列性能的变化规律,可为高峰值功率、高可靠性的半导体激光阵列的研制提供参考. |
其他语种文摘
|
In order to study the issues of non-uniform performance of the emitters in laser bars,960 nm laser bars with 38 emitters and cavity length of 2 mm packaged by the microchannel cooler were experimentally studied.The peak output power reaches 665.6W,the electro-optic conversion efficiency is 63.8%,and the centroid wavelength is 959.5 nm under the driving current of 600Aand the duty ratio of 10%.Firstly,theoretical analysis was made to find out the relationship between the external stress and laser's parameter changes.Then,the laser photoelectric characteristics parameters such as threshold current,slope efficiency,spectrum and optical power were measured via the test setup.From external stress theory,it is clear that external stress can significantly affect the laser's parameter performance. Specifically,compressive strain will cause blue-shift in wavelength,decrease in threshold current,and increase in laser and slope efficiency;tensile strain by contrast,will have completely opposite effects on the laser performance.Studies have shown the performance that affects the internal emitters is not only thermal effects,but also residual strain after packaging.The distribution of stress can basically predict the pattern of array performance,which will provide a reference for the development of high peak power, high reliability semiconductor laser arrays. |
来源
|
光子学报
,2020,49(9):0914001 【核心库】
|
DOI
|
10.3788/gzxb20204909.0914001
|
关键词
|
高功率半导体激光阵列
;
独立发光点
;
应变
;
微通道
;
光电特性
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
陕西省自然科学基金
;
陕西省科技厅人才项目
|
文献收藏号
|
CSCD:6812032
|
参考文献 共
32
共2页
|
1.
Wang Lijie. Loss tailoring of high-power broad-area diode lasers.
Optics Letters,2019,44(14):3562
|
CSCD被引
5
次
|
|
|
|
2.
Yu C X. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier.
Optics Letters,2016,41(22):5202
|
CSCD被引
22
次
|
|
|
|
3.
Wu D H. Three-dimensional thermal model of high-power semiconductor lasers.
Applied Optics,2019,58(14):3892-3901
|
CSCD被引
2
次
|
|
|
|
4.
Tomm J W. Simultaneous quantification of strain and defects in high-power diode laser devices.
Applied Physics Letters,2002,81(17):3269
|
CSCD被引
6
次
|
|
|
|
5.
Kim D S. Method for predicting junction temperature distribution in a high-power laser diode bar.
Applied Optics,2016,55(27):7487-7496
|
CSCD被引
3
次
|
|
|
|
6.
Matthew P. High-power high-efficiency laser diodes at JDSU.
Proceedings of SPIE-The International Society for Optical Engineering. 6456(5),2007:1217-1222
|
CSCD被引
1
次
|
|
|
|
7.
Wang Zhenfu. High power,high efficiency continuous-wave 808nm laser diode arrays.
Optics &Laser Technology,2017,97:297-301
|
CSCD被引
6
次
|
|
|
|
8.
Mahler F. By-emitter analysis of 450-nm emitting high-power diode laser bars.
IEEE Journal of Selected Topics in Quantum Electronics,2019,25(6):1-6
|
CSCD被引
1
次
|
|
|
|
9.
Bull S. Emulation of the operation and degradation of high-power laser bars using simulation tools.
Semiconductor Science and Technology,2012,27(9):137-143
|
CSCD被引
1
次
|
|
|
|
10.
Martin-Martin A. Thermomechanical model for the plastic deformation in high power laser diodes during operation.
Journal of Applied Physics,2009,106(7):073105
|
CSCD被引
5
次
|
|
|
|
11.
Fang Junyu. Thermal management of a semiconductor laser array based on a graphite heat sink.
Applied Optics,2019,58(28):7708-7715
|
CSCD被引
3
次
|
|
|
|
12.
鲁瑶. 传导冷却单巴高功率半导体激光器热应力和smile研究.
光子学报,2017,46(9):0914001
|
CSCD被引
3
次
|
|
|
|
13.
Nie Zhiqiang. Thermomechanical behavior of conduction-cooled high-power diode laser arrays.
IEEE Transactions on Components Packaging & Manufacturing Technology,2018,8(5):818-829
|
CSCD被引
1
次
|
|
|
|
14.
Xia R. Mounting-induced strain threshold for the degradation of high-power AlGaAs laser bars.
IEEE Photonics Technology Letters,2002,14(7):893-895
|
CSCD被引
2
次
|
|
|
|
15.
Cassidy D T. High-power diode laser bars and shear strain.
Optics Letters,2013,38(10):1633
|
CSCD被引
2
次
|
|
|
|
16.
Zhang Hongyou. Easy method to measure the packaging-induced stress of a semiconductor laser diode by lasing wavelength shifting.
Applied Optics,2019,58(24):6672
|
CSCD被引
1
次
|
|
|
|
17.
袁庆贺. 大功率半导体激光器封装热应力研究.
中国激光,2019,46(10):1001009
|
CSCD被引
7
次
|
|
|
|
18.
Tomm J W. Spectroscopic strain measurement methodology:degree-of-polarization photoluminescence versus photocurrent spectroscopy.
Applied Physics Letters,2006,88(13):133504
|
CSCD被引
2
次
|
|
|
|
19.
Tripathy S. Micro-Raman investigation of strain in GaN and Al_x Ga_(1-x) N/GaN heterostructures grown on Si(111).
Journal of Applied Physics,2002,92(7):3503-3510
|
CSCD被引
13
次
|
|
|
|
20.
Bull S. A spectroscopically resolved photo-and electroluminescence microscopy technique for the study of high-power and high-brightness laser diodes.
IEEE Transactions on Instrumentation & Measurement,2005,54(3):1079-1088
|
CSCD被引
2
次
|
|
|
|
|