基于活动的瓶颈模型和收费机制:研究进展评述
Activity-based bottleneck model and charging mechanism: A literature review
查看参考文献30篇
文摘
|
Vickrey于1969年应用确定性排队理论,首次提出了一个能导致所有出行者具有相同交通费用的内生出发时间选择模型,即著名的瓶颈模型.50年前,Vickrey提出的瓶颈模型以出行作为分析单位,没有考虑出行与活动之间的相互关联.近年来,出现的基于活动的瓶颈模型考虑了时变活动效用对通勤者出发时间选择的影响.瓶颈处的排队延误纯粹是一种社会损失,拥挤收费是消减瓶颈排队延误的有效的经济手段,而瓶颈模型是研究拥挤收费的强有力工具.本文回顾了瓶颈模型的研究进展,介绍了经典的瓶颈模型和基于活动的瓶颈模型的基础理论,分析和比较了两类模型最优动态收费和最优阶梯收费下的解及其消除排队延误的效率. |
其他语种文摘
|
Vickrey first proposed an endogenous departure time decision model using the deterministic queuing theory in 1969,called bottleneck model.At equilibrium,all travelers have the same travel cost regardless of their departure time.The bottleneck model proposed by Vickrey fifty years ago used the trip as the unit of analysis without considering the correlation between trip and activity connected by a trip.However,the activity-based bottleneck model recently proposed has considered the impact of time-varying activity utility on the commuter's departure time decision.The queuing delay at a bottleneck is purely a deadweight loss to the society.Congestion pricing is an effective economic measure to reduce bottleneck queuing delay,and the bottleneck model is a powerful tool for investigating congestion pricing problems.This paper provides a review of the research progress of the bottleneck model,introduces the basic theories of standard bottleneck model and activity-based bottleneck model,and analyzes and compares two models' equilibrium solutions and their efficiencies in eliminating bottleneck queuing delays under the optimal dynamic time-varying toll scheme and optimal step toll scheme. |
来源
|
系统工程理论与实践
,2020,40(8):2076-2089 【核心库】
|
DOI
|
10.12011/1000-6788-2019-2612-14
|
关键词
|
瓶颈模型
;
基于出行的方法
;
基于活动的方法
;
拥挤收费
;
均衡
|
地址
|
华中科技大学管理学院, 武汉, 430074
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-6788 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
国家自然科学基金重大项目
;
国家自然科学基金中欧联合研究项目
|
文献收藏号
|
CSCD:6793960
|
参考文献 共
30
共2页
|
1.
Vickrey W S. Congestion theory and transport investment.
American Economic Review,1969,59(2):251-261
|
CSCD被引
36
次
|
|
|
|
2.
郭晓. 基于瓶颈模型的异质出行者早高峰出行问题研究.
系统工程理论与实践,2018,38(4):1003-1012
|
CSCD被引
10
次
|
|
|
|
3.
徐淑贤. 用户异质下公交定价和道路收费收入再分配.
系统工程理论与实践,2015,35(7):1791-1799
|
CSCD被引
13
次
|
|
|
|
4.
王景鹏. 用于异质用户出行管理的可交易许可证研究.
系统工程理论与实践,2017,37(5):1331-1338
|
CSCD被引
9
次
|
|
|
|
5.
陈蒂. 面向双目标时刻瓶颈模型-交通错峰原理.
管理科学学报,2015,18(8):52-60
|
CSCD被引
7
次
|
|
|
|
6.
Ettema D.
Activity-based approaches to travel analysis,1997
|
CSCD被引
1
次
|
|
|
|
7.
Ettema D. Modeling departure time choice in the context of activity scheduling behavior.
Transportation Research Record,2003,1831(1):39-46
|
CSCD被引
5
次
|
|
|
|
8.
Liu H X. Estimation of time-dependency of values of travel time and its reliability from loop detector data.
Transportation Research Part B,2007,41(4):448-461
|
CSCD被引
6
次
|
|
|
|
9.
Tseng Y Y. Value of time by time of day: A stated-preference study.
Transportation Research Part B,2008,42(7/8):607-618
|
CSCD被引
12
次
|
|
|
|
10.
Jenelius E. Traveler delay costs and value of time with trip chains, flexible activity scheduling and information.
Transportation Research Part B,2011,45(5):789-807
|
CSCD被引
7
次
|
|
|
|
11.
Hjorth K. Estimating exponential scheduling preferences.
Transportation Research Part B,2015,81:230-251
|
CSCD被引
6
次
|
|
|
|
12.
Vickrey W S. Pricing, metering, and efficiently using urban transportation facilities.
Highway Research Record,1973,476:36-48
|
CSCD被引
2
次
|
|
|
|
13.
Zhang X N. Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion.
Transportation Research Part A,2005,39(1):41-60
|
CSCD被引
3
次
|
|
|
|
14.
Jenelius E. The value of travel time variability with trip chains, flexible scheduling and correlated travel times.
Transportation Research Part B,2012,46(6):762-780
|
CSCD被引
10
次
|
|
|
|
15.
Fosgerau M. The value of travel time variance.
Transportation Research Part B,2011,45(1):1-8
|
CSCD被引
6
次
|
|
|
|
16.
Engelson L. Additive measures of travel time variability.
Transportation Research Part B,2011,45(10):1560-1571
|
CSCD被引
1
次
|
|
|
|
17.
Borjesson M. Valuations of travel time variability in scheduling versus mean-variance models.
Transportation Research Part B,2012,46(7):855-873
|
CSCD被引
3
次
|
|
|
|
18.
Fosgerau M. Congestion in a city with a central bottleneck.
Journal of Urban Economics,2012,71(3):269-277
|
CSCD被引
3
次
|
|
|
|
19.
Fosgerau M. Trip-time decisions with traffic incidents.
Regional Science and Urban Economics,2013,43(5):764-782
|
CSCD被引
1
次
|
|
|
|
20.
Li Z C. Bottleneck model revisited: An activity-based perspective.
Transportation Research Part B,2014,68:262-287
|
CSCD被引
13
次
|
|
|
|
|