基于Hanson噪声模型的螺旋桨气动与噪声优化设计
Aerodynamic and Aeroacoustic Optimization of Propeller Based on Hanson Noise Model
查看参考文献26篇
文摘
|
针对螺旋桨气动与噪声多目标优化设计问题,采用基于非均匀有理B样条的自由曲面变形方法对全桨叶进行三维几何变形。为节省优化计算成本,将RANS方法和Hanson模型相结合预测纯音噪声,其预测精度与耦合URANS方法的FW-H方程相当。在此基础上,采用Kriging代理模型与非支配关系排序遗传算法进行优化搜索,建立了螺旋桨气动与噪声多目标优化设计框架。采用该框架对某民航客机螺旋桨进行优化设计,优化以叶片不同展向站位的翼型扭转角和弦长作为设计变量。相比基础桨叶,在功率不增加的情形下,巡航构型风洞试验状态的轴向监测点噪声值最大下降约0.25 dB,在功率略有增加的情形下,噪声降低约1 dB。 |
其他语种文摘
|
Aiming at the multi-objective optimization design problem of propeller aerodynamics and noise,the three-dimensional geometric deformation of the whole blade is carried out by the free-form surface deformation method based on non-uniform rational B-spline.In order to save the calculation cost of optimization,the RANS method and the Hanson model are combined to predict pure tone noise,and the prediction accuracy is comparable to the accuracy of the FW-H equation coupled with URANS method.Kriging surrogate model and non-dominated sorting genetic algorithm are used to search for optimal value,and a multi-objective optimization design framework for propeller aerodynamics and noise is established.This method is used to optimize the blade shape of a passenger airliner propeller,and the airfoil torsion angle and chord length of different positions are optimized as design variables.Compared with the basic blade,the noise value of the axial monitoring point near the cruise configuration under the wind tunnel experiment condition is reduced by about 0.25 dB at the same time as the power is reduced.In the case of a slight increase in power,the noise is reduced by about 1 dB. |
来源
|
西北工业大学学报
,2020,38(4):685-694 【核心库】
|
DOI
|
10.1051/jnwpu/20203840685
|
关键词
|
自由曲面变形方法(FFD)
;
多重参考坐标系(MRF)
;
Hanson噪声模型
;
非支配关系排序算法(NSGAII)
|
地址
|
西北工业大学航空学院, 陕西, 西安, 710072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-2758 |
学科
|
航空 |
文献收藏号
|
CSCD:6793494
|
参考文献 共
26
共2页
|
1.
Pagano A. Multi-Objective Aeroacoustic Optimization of an Aircraft Propeller.
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,2008
|
CSCD被引
1
次
|
|
|
|
2.
Marinus B G. Multidisciplinary Optimization of Propeller Blades: Focus on the Aeroacoustic Results.
17th AIAA/CEAS Aeroacoustics Conference,2011
|
CSCD被引
2
次
|
|
|
|
3.
Canard-Caruana S. ANIBAL: a New Aero-Acoustic Optimized Propeller for Light Aircraft Applications.
19th AIAA Aviation Technology, Integration and Operations Conference and Aircraft Noise and Emisions Reduction Symposium,2010
|
CSCD被引
1
次
|
|
|
|
4.
王博. 悬停状态直升机桨叶扭转分布的优化数值计算.
航空学报,2012,33(7):1163-1172
|
CSCD被引
9
次
|
|
|
|
5.
招启军. 基于CFD方法的倾转旋翼/螺旋桨气动优化分析.
空气动力学报,2017,35(4):544-553
|
CSCD被引
8
次
|
|
|
|
6.
郭旺柳. 旋翼桨尖气动/降噪综合优化设计研究.
西北工业大学学报,2012,30(1):73-79
|
CSCD被引
6
次
|
|
|
|
7.
朱正. 低HSI噪声旋翼桨尖外形优化设计方法.
航空学报,2015,36(5):1442-1452
|
CSCD被引
7
次
|
|
|
|
8.
Gutin L.
On the Sound Field of a Rotating Propeller. NACATM-1195,1948
|
CSCD被引
1
次
|
|
|
|
9.
Deming A F.
Noise from Propellers with Symmetrical Sections at Zero Blade Angle. NACA TN-679,1937
|
CSCD被引
1
次
|
|
|
|
10.
Garrick L E.
A Theoretical Study of the Effect of Forward Speed on the Free-Space Sound-Pressure Field around Propellers. NACA Report 1198,1953
|
CSCD被引
1
次
|
|
|
|
11.
Arnoldi R A.
Propeller Noise Caused by Blade Thickness. United Aircraft Corporation Research Department Report R-0896-1,1956
|
CSCD被引
1
次
|
|
|
|
12.
Arnoldi R A.
Near Field Computations of Propeller Blade Thickness Noise. United Aircraft Corporation Research Department Report R-0896-2,1956
|
CSCD被引
1
次
|
|
|
|
13.
Barry F W.
Noise Detectability Prediction Method for Low Tip Speed Propellers. Hamilton Standard Division TR-71-37,1971
|
CSCD被引
1
次
|
|
|
|
14.
Hanson D B. Helicoidal Surface Theory for Harmonic Noise of Propellers in the Far Field.
AIAA Journal,1980,18(10):1213-1220
|
CSCD被引
9
次
|
|
|
|
15.
Hanson D B. Sound from a Propeller at Angle of Attack: a New Theoretical Viewpoint.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1995,449(1936):315-328
|
CSCD被引
1
次
|
|
|
|
16.
Kotwicz H M T. Applicability of Early Acoustic Theory for Modern Propeller Design.
23rd AIAA/CEAS Aeroacoustics Conference,2017
|
CSCD被引
1
次
|
|
|
|
17.
Kotwicz H M T. Evaluation of Acoustic Frequency Methods for the Prediction of Propeller Noise.
AIAA Journal,2019,57(6):2465-2478
|
CSCD被引
3
次
|
|
|
|
18.
Sederberg T W. Free-Form Deformation of Solid Geometric Models.
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques,1986:151-160
|
CSCD被引
27
次
|
|
|
|
19.
Lamousin H J. NURBS-Based Free-Form Deformations.
IEEE Computer Graphics and Applications,1994(6):59-65
|
CSCD被引
38
次
|
|
|
|
20.
Boer A D. Mesh Deformation Based on Radial Basis Function Interpolation.
Computers & Structures,2007,85(11):784-795
|
CSCD被引
45
次
|
|
|
|
|